%! TEX root = LST.tex % vim: tw=50 % 05/03/2024 09AM \subsection{Picture of the Universe} Idea: everything is built up from $\emptyset$ using $\PP$ and $\cup$. Have \[ V_0 = \emptyset, V_1 = \PP \emptyset = \{\emptyset\}, V_2 = \PP\PP\emptyset = \{\emptyset, \{\emptyset\}\}, \ldots \] and then will have \[ V_{\oomega} = \bigcup \{V_0, V_1, V_2, \ldots\}, V_{\oomega + 1} = \PP V_{\oomega}, \text{etc} \] It will be \gls{Fnd} that guarantees that every set appears in a $V_\alpha$. \begin{center} \includegraphics[width=0.6\linewidth]{images/154befa6c00440a2.png} \end{center} \begin{flashcard}[von-neumann-hierarchy] \glsnoundefn{vnh}{von Neumann hierarchy}{N/A} \glssymboldefn{vnh}{$V_\alpha$}{$V_\alpha$} We define sets $V_\alpha$, $\alpha \in \ON$ by \gls{epsrec}: \begin{itemize} \item \cloze{$\alpha = 0$: $V_0 = \emptyset$} \item \cloze{$\alpha = \beta\osucc$: $V_\alpha = \PP V_\beta$} \item \cloze{$\alpha \neq 0$ \glsref[limord]{limit}: $V_\alpha = \bigcup \{V_\gamma \st \gamma \wlt \alpha\}$} \end{itemize} The sets $V_\alpha$ form \cloze{the \emph{von Neumann hierarchy}.} \end{flashcard} \textbf{Aim:} Every set appears in this hierarchy. \begin{flashcard}[V-alpha-trans] \begin{lemma} \label{vnh_trans} $\vnh_\alpha$ is \gls{transset} for all $\alpha \in \ON$. \end{lemma} \begin{proof} \cloze{By \gls{induction} on $\alpha$. \begin{itemize} \item $\alpha = 0$: $\vnh_0 = \emptyset$ is \gls{transset}. \item $\alpha = \beta\osucc$: Let $x \zin \vnh_\alpha = \PP \vnh_\beta$. Then $x \subset \vnh_\beta$. If $y \zin x$, then $y \zin \vnh_\beta$, so by \gls{induction} hypothesis, $y \subset \vnh_\beta$ ($\vnh_\beta$ is \gls{transset}). So every $y \zin x$ has $y \zin \PP \vnh_\beta = \vnh_\alpha$. Thus $\vnh_\alpha$ is \gls{transset}. \item $\alpha \neq 0$ \glsref[limord]{limit}: If $x \zin \vnh_\alpha$, then $\exists \gamma \wlt \alpha$, $x \zin \vnh_\gamma$. By induction, $\vnh_\gamma$ is \gls{transset}, so $x \subset \vnh_\gamma \subset \vnh_\alpha$. So $\vnh_\alpha$ is \gls{transset} \qedhere \end{itemize} } \end{proof} \end{flashcard} \begin{flashcard}[V-alpha-inclusion] \begin{lemma} \label{vnh_chain} If $\alpha \wle \beta$, then $\vnh_\alpha \subset \vnh_\beta$. \end{lemma} \begin{proof} \cloze{By \gls{induction} on $\beta$. \begin{itemize} \item $\beta = 0$: $\alpha \wle \beta$, so $\alpha = 0$, so $\vnh_\alpha = \vnh_\beta$. \item $\beta = \gamma\osucc$: If $\alpha = \beta$ then $\vnh_\alpha = \vnh_\beta$. If $\alpha \wlt \beta$, then $\alpha \wle \gamma$, so by \gls{induction} hypothesis, $\vnh_\alpha \subset \vnh_\gamma$. If $x \zin \vnh_\gamma$, then $x \subset \vnh_\gamma$ ($\vnh_\gamma$ is \gls{transset}), so $x \zin \PP \vnh_\gamma \subset \vnh_\beta$. Thus $\vnh_\gamma \subset \vnh_{\gamma\osucc} = \vnh_\beta$, and hence $\vnh_\alpha \subset \vnh_\beta$. \item If $\beta \neq 0$ \glsref[limord]{limit}: then if $\alpha \wlt \beta$ then $\vnh_\alpha \subset \vnh_\beta$ by definition. \qedhere \end{itemize} } \end{proof} \end{flashcard} \begin{flashcard}[vnh-exhausts-universe] \begin{theorem} \label{vnh_exhaustion} The \gls{vnh} exhausts the set theoretic universe $V$, i.e. \[ (\pforall x)(\pexists \alpha \in \ON)(x \zin \vnh_\alpha) \] or \[ V = \bigcup_{\alpha \in \ON} \vnh_\alpha .\] \end{theorem} \fcscrap{ \begin{note*} If $x \zin \vnh_\alpha$ then $x \subset \vnh_\alpha$ (by \cref{vnh_trans}). If $x \subset \vnh_\alpha$ then $x \zin \PP \vnh_\alpha = \vnh_{\alpha \opl 1}$. \glssymboldefn{vnhrank}{rank}{rank} If $\exists \alpha \in \ON$, $x \subset \vnh_\alpha$ then define the \emph{rank of $x$} to be $\vnhrank(x)$, the least $\alpha \in \ON$ such that $x \subset \vnh_\alpha$. \end{note*} } \begin{proof} \cloze{We will show $(\pforall x)(\pexists \alpha \in \ON)(x \subset \vnh_\alpha)$ by \gls{epsind}. Fix $x$ and assume for each $y \zin x$, $y \subset \vnh_\alpha$ for some $\alpha \in \ON$, so for all $y \zin x$, $y \subset \vnh_{\vnhrank(y)}$. Let \[ \alpha = \sup\{\vnhrank(y)\osucc \st y \zin x\} ,\] which is a set by \gls{Rep}. We'll show $x \subset \vnh_\alpha$. If $y \zin x$, then $y \subset \vnh_{\vnhrank(y)}$, so $y \zin \PP \vnh_{\vnhrank(y)} = \vnh_{\vnhrank(y)\osucc} \subset \vnh_\alpha$ (where the final $\subset$ is using \cref{vnh_chain}). This shows $x \subset \vnh_\alpha$.} \end{proof} \end{flashcard} \begin{flashcard}[rank-computation-coro-vnh] \begin{corollary} For every set $x$, \[ \vnhrank(x) = \cloze{\sup\{\vnhrank(y)\osucc \st y \zin x\}} \] \end{corollary} \begin{proof} \phantom{} \cloze{ \begin{enumerate}[$\le$:] \item[$\le$:] Follows from proof of \cref{vnh_exhaustion}. \item[$\ge$:] We first show that $x \zin \vnh_\alpha \implies \vnhrank(x) \wlt \alpha$. \begin{itemize} \item $\alpha = 0$ is true. \item $\alpha = \beta\osucc$: $x \zin \PP \vnh_\beta$, so $x \subset \vnh_\beta$, so $\vnhrank(x) \wle \beta \wlt \alpha$ \item $\alpha \neq 0$ \glsref[limord]{limit}: $x \zin \vnh_\alpha \implies \exists \gamma \wlt \alpha$ with $x \zin \vnh_\gamma$, so $\vnhrank(x) \wlt \gamma \wlt \alpha$. \end{itemize} Now let $\alpha = \vnhrank(x)$. Then $x \subset \vnh_\alpha$, so for $y \zin x$, $y \zin \vnh_\alpha$ and so $\vnhrank(y) \wlt \alpha$. Hence \[ \sup\{\vnhrank(y)\osucc \st y \zin x\} \wle \alpha . \qedhere \] \end{enumerate} } \end{proof} \end{flashcard} \begin{example*} $\vnhrank(\alpha) = \alpha$ for all $\alpha \in \ON$. By \gls{induction}: \begin{align*} \vnhrank(\alpha) &= \sup\{\vnhrank(\beta)\osucc \st \beta \wlt \alpha\} \\ &= \sup\{\beta\osucc \st \beta \wlt \alpha\} &&\text{(induction hypothesis)} \\ &= \alpha \end{align*} \end{example*} \newpage \section{Cardinal Arithmetic} \glssymboldefn{ssize}{cong}{cong} Look at the size of sets. We write $x \ssize y$ to mean \[ (\pexists f)(f : x \to y \pand \text{``$f$ is a bijection''}) .\] This is an equivalence relation \gls{cls}. The equivalence classes are proper \glspl{cls} (except $\{\emptyset\}$). \glssymboldefn{card}{card $x$}{card $x$} How do we pick a representative from each equivalence class? We seek for each set $x$, a set $\card x$ such that \[ (\pforall x)(\pforall y)(\card x = \card y \iff x \ssize y) \] In \gls{ZFC} this is easy: given a set $x$, $x$ can be \glsref[wellord]{well-ordered}, so $x \ssize \OT(x)$, i.e. $x \ssize \alpha$ for some $\alpha \in \ON$. Can define $\card x$ to be the least $\alpha \in \ON$ such that $x \ssize \alpha$. In \gls{ZF} (due to D. S. Scott): define the \emph{essential rank} as follows: \[ \essrank(x) = \text{least $\alpha$ such that $\exists y \subset \vnh_\alpha$ with $y \ssize x$} .\] Note $\essrank(x) \wle \vnhrank(x)$. Define \[ \card x = \{y \subset \vnh_{\essrank(x)} \st y \ssize x\} .\]