%! TEX root = LST.tex % vim: tw=50 % 02/03/2024 09AM \begin{flashcard}[motowski-thm] \begin{theorem}[Mostowki's Collapsing Theorem] \label{motowski} \cloze{Let $r$ be a \gls{wfdd}, \gls{extensional} relation on a set $a$. Then there is a \gls{transset} $b$ and a bijection $f : a \to b$ such that \[ (\pforall x, y \zin a)(x r y \iff f(x) \zin f(y)) .\] Moreover, $(b, f)$ is unique.} \end{theorem} \begin{proof} \cloze{By \gls{rrec} on $a$, there's a \gls{funccls} such that \[ \pforall x \in a \quad f(x) = \{f(y) \st y \zin a \pand y r x\} .\] Note that $f$ is a function, not just a \gls{funccls}, since $\{(x, f(x)) \st x \zin a\}$ is a set by \gls{Rep}. Then \[ b = \{f(x) \st x \in a\} \] is a set by \gls{Rep}. Now we check: \begin{itemize} \item $b$ is \gls{transset}: let $z \zin b$ and $w \zin z$. There's a $x \zin a$ such that $z = f(x)$, and so there's $y \zin a$ such that $y r x$ and $w = f(y) \zin b$. \item $f$ is surjective (true by definition of $b$). \item $\pforall x, y \zin a$, $x r y \pimpl f(x) \zin f(y)$ is true by definition of $f$. \item It remains to show that $f$ is injective. It will then follow that $\pforall x, y \zin a$, $f(x) \zin f(y) \pimpl x r y$. Indeed, if $f(x) \zin f(y)$, then $f(x) = f(z)$ for some $z \zin a$ with $z r y$. Since $f$ is injective, $x = z$, so $x r y$. We will show \[ (\pforall x \zin a)\ub{(\pforall y \zin a)(f(x) = f(y) \pimpl x = y)}_{\text{``$f$ is injective at $x$''}} \] by \gls{rind}. Fix $x \zin a$ and assume that $f$ is injective at $s$ whenever $s \zin a$ and $s r x$. Assume $f(x) = f(y)$ for some $y \zin a$, i.e. \[ \{f(s) \st s \zin \pand s r x\} = \{f(t) \st t \zin a \pand t r y\} .\] Since $f$ is injective at every $s \zin a$ with $s r x$, it follows that \[ \{s \zin a \st s r x\} = \{t \zin a \st t r y\} .\] By \glsref[extensional]{extensionality} for $r$, it follows that $x = y$. \end{itemize} Now we check that $(b, f)$ is unique. Assume that $(b, f)$ and $(b', f')$ both satisfy the theorem. We prove \[ (\pforall x \zin a)(f(x) = f'(x)) \] by \gls{rind}. Fix $x \zin a$ and assume $f(y) = f'(y)$ whenever $y \zin a$ and $y r x$. If $z \zin f(x)$, then $z \zin b$ ($b$ \gls{transset}), so $z = f(y)$ for some $y \zin a$ with $y r x$. Then $z = f(y) = f'(y)$ (induction hypothesis). Then $z = f'(y) \zin f'(x)$. Similarly, if $z \zin f'(x)$ thne $z \zin f(x)$. By \gls{Ext}, $f(x) = f'(x)$.} \end{proof} \end{flashcard} \begin{flashcard}[ordinal-defn-for-real-this-time] \begin{definition*}[Ordinal (set theoretic)] \glsnoundefn{setordinal}{ordinal}{ordinals} \cloze{An \emph{ordinal} is a \gls{transset} which is \glsref[wellord]{well-ordered} by $\zin$ (equivalently, \glsref[linord]{linearly ordered} since $\zin$ is \gls{wfdd} by \gls{Fnd}).} \end{definition*} \end{flashcard} \begin{note*} Let $a$ be a set and $r$ be a \gls{wellord} on $a$. Then $r$ is \gls{wfdd} and \gls{extensional} (if $x, y \zin a$ and $\pnot x = y$ then $x r y$ or $r y x$, but not both). By \nameref{motowski}, there exists a \gls{transset} $b$ and a bijection $f : a \to b$ such that $x r y \iff f(x) \zin f(y)$, i.e. $f(a, r) \to (b, \zin)$ is an \gls{ordisism}. So $b$ is an \gls{setordinal}. So by \nameref{motowski}, every \glsref[wellord]{well-ordered} set is \gls{ordisic} to a unique \gls{setordinal}, called the order-type of $x$. \glssymboldefn{ON}{ON}{ON} We let $\ON$ denote the \gls{cls} of \glspl{setordinal} (given by the \gls{form} ``$x$ is an \gls{setordinal}''). It is a proper \gls{cls} by \nameref{burati_forti}. \end{note*} \begin{flashcard}[set-theory-ordinal-props] \begin{proposition} \prompt{(Some set theoretic facts for ordinals): } Let $\alpha, \beta \in \ON$, and let $a$ be a set of \glspl{setordinal}. Then: \begin{enumerate}[(i)] \item Every member of $\alpha$ is an \gls{setordinal}. \item $\beta \zin \alpha \iff \beta < \alpha$ ($\beta$ is \gls{ordisic} to a proper \gls{is} of $\alpha$) \item $\alpha \zin \beta$ or $\alpha = \beta$ or $\beta \zin \alpha$ \item $\alpha\osucc = \alpha \cup \{\alpha\}$ (i.e. the set theoretic meaning and ordinal meanings for ${}^+$ agree). \item $\bigcup a$ is an \gls{setordinal} and $\bigcup a = \sup a$. \end{enumerate} \end{proposition} \fcscrap{ \begin{remark*} (ii) says that $\alpha$ really \emph{is} the set of ordinals $\wlt \alpha$. (iii) says that $\zin$ \glsref[linord]{linearly orders} the class $\ON$. (iv) resolves the clash of notation $x^+$ in \cref{sec2} and \cref{sec5}. (v) now shows that any set of \glsref[wellord]{well-ordered} sets has an upper bound. \end{remark*} } \begin{proof} \phantom{} \cloze{ \begin{enumerate}[(i)] \item Let $\gamma \zin \alpha$. Then $\gamma \subset \alpha$ (since $\alpha$ is \gls{transset}) and hence $\zin$ \glsref[linord]{linearly orders} $\gamma$. Given $\eta \zin \delta, \delta \zin \gamma$, then $\delta \zin \alpha$ and so $\eta \zin \alpha$ ($\alpha$ \gls{transset}). Since $\zin$ is \gls{transset} on $\alpha$, we have $\eta \zin \gamma$. So $\gamma$ is a \gls{transset}, so $\gamma$ is an \gls{setordinal}. \item If $\beta \zin \alpha$, then $I_\beta = \{\gamma \zin \alpha \st \gamma \zin \beta\} = \beta$, so $\beta \wlt \alpha$. Any proper \gls{is} of $\alpha$ is of the form $I_\gamma$ for some $\gamma \zin \alpha$. So $\beta \wlt \alpha \implies \beta \zin \alpha$. \item We know $\beta \wlt \alpha$ or $\beta = \alpha$ or $\alpha \wlt \beta$ is true. Then done by (ii). \item Let $\beta = \alpha \cup \{\alpha\}$ (successor of $\alpha$). If $\gamma \zin \beta$ then either $\gamma = \alpha \subset \beta$ or $\gamma \zin \alpha$, so $\gamma \subset \alpha \subset \beta$. Thus $\beta$ is \gls{transset}, \glsref[linord]{linearly ordered} by $\zin$ (by (iii)) and $\alpha$ is the greatest element. So $\beta = \alpha\osucc$ in the sense of \cref{sec2}. \item $\bigcup a$ is a union of \gls{transset} sets, hence \gls{transset}. Every member of $\bigcup a$ is an \gls{setordinal}, so $\bigcup a$ is \glsref[linord]{linearly ordered} by $\zin$ by (iii). If $\gamma \zin a$, then $\gamma \subset \bigcup a$, so either $\gamma = \bigcup a$, or $\gamma \zin \bigcup a$ (by (ii)), i.e. $\gamma \wle \bigcup \alpha$. If $\gamma \wle \delta$ for all $\gamma \zin \alpha$, then $\gamma = \delta$ or $\gamma \zin \delta$ for $\gamma \zin a$, i.e. $\gamma \subset \delta$ (using (ii)). So $\bigcup a \subset \delta$, i.e. $\bigcup a \wle \delta$. \qedhere \end{enumerate}} \end{proof} \end{flashcard} \begin{example*} $0 = \emptyset \in \ON$, hence $n \zin \ON$ for all $n \zin \omega$ (by $\omega$-induction). $\omega$ is \gls{transset}, so $\bigcup \omega \subset \omega$. If $n \zin \omega$, then $n \in n\osucc \zin \omega$, so $n \zin \bigcup \omega$. So $\omega = \bigcup \omega$ is an \gls{setordinal} and $\omega = \sup \omega$. \end{example*}