%! TEX root = LST.tex % vim: tw=50 % 20/01/2024 09AM \item $(\pnot\pnot p \impl p)$ for any $p \in \propL$. This can also be written as $(((p \impl \false) \impl \false) \impl p)$, and this can also be rewritten as $\pnot p \por p$. This is called `law of excluded middle'. \begin{center} \begin{tabular}{c|c|c|c} $\propv(p)$ & $\propv(p \impl \false)$ & $\propv((p \impl \false) \impl \false)$ & $\propv(((p \impl \false) \impl \false) \impl p)$ \\ \hline $0$ & $1$ & $0$ & $1$ \\ $1$ & $0$ & $1$ & $1$ \\ \end{tabular} \end{center} \item $(p \impl (q \impl r)) \impl ((p \impl q) \impl (p \impl r))$ ($p, q, r \in \propL$). If not a \gls{taut}, then there exists a \gls{vtion} $\propv$ such that $\propv(p \impl (q \impl r)) = 1$, $\propv((p \impl q) \impl (p \impl r)) = 0$. So $\propv(p \impl q) = 1$, $\propv(p \impl r) = 0$. Hence $\propv(p) = 1$, $\propv(r) = 0$ and $\propv(q) = 1$. Then $\propv(p \impl (q \impl r)) = 0$ \contradiction. \end{enumerate} \end{example*} \begin{flashcard}[semantic-entailment-defn] \begin{definition*}[Semantic entailment] \glsverbdefn{psement}{semantically entails}{semantically entails} \glssymboldefn{pentails}{$\models$}{$\models$} \cloze{Let $S \subset L$, $t \in L$. Say \emph{$S$ entails $t$} (or \emph{$S$ semantically entails $t$}), written $S \models t$, if for every \gls{vtion} $\propv$ on $\propL$, $\propv(s) = 1 ~\forall s \in S$ implies $\propv(t) = 1$.} \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item $\{p, p \impl q\} \sementails q$. \item $\{p \impl q, q \impl r\} \sementails (p \impl r)$. If $\propv(p \impl r) = 0$ then $\propv(p) = 1$, $\propv(r) = 0$. Then either $\propv(q) = 0$ and $\propv(p \impl q) = 0$ or $\propv(q) = 1$ and $\propv(q \impl r) = 0$. \end{enumerate} \end{example*} \begin{note*} \glssymboldefn{ptaut}{$\models$}{$\models$} $t$ is a \gls{taut} if and only if $\emptyset \sementails t$. We write this as $\taut t$. \end{note*} \begin{flashcard}[model-defn] \begin{definition*}[Model] \glsnoundefn{pmodel}{model}{models} \cloze{Given $t \in \propL$, say a \gls{vtion} \emph{is a model for $t$} (or $t$ \emph{is true in $\propv$}) if $\propv(t) = 1$. Given $S \subset L$, say a \gls{vtion} $\propv$ \emph{is a model of $S$} if $\propv(s) = 1$ for all $s \in S$.} \end{definition*} \end{flashcard} \begin{remark*} So $S \sementails t$ says that $t$ is true in every model of $S$. \end{remark*} \vspace{-1em} \glsnoundefn{MP}{MP}{MP} We will have one rule of deduction called \emph{modus ponens} (MP): from $p$ and $p \impl q$ we can deduce $q$. \begin{flashcard}[axiom-defn] \begin{definition*}[Axiom] \glsnoundefn{axiom}{axiom}{axioms} The axioms we will use for proofs in proprositional logic are the following: \begin{enumerate}[(A1)] \item \cloze{$(p \impl (q \impl p))$} \item \cloze{$(\pnot\pnot p \impl p)$} \item \cloze{$(p \impl (q \impl r)) \impl ((p \impl q) \impl (p \impl r))$} \end{enumerate} \end{definition*} \end{flashcard} \begin{flashcard}[prop-proof-defn] \begin{definition*}[Proof] \glsnoundefn{pproof}{proof}{proofs} \cloze{Given $S \subset \propL$, $t \in \propL$, a \emph{proof of $t$ from $S$} is a finite sequence $t_1, t_2, \ldots, t_n$ of \glspl{prop} such that $t_n = t$ and for every $i$ either $t_i$ is an axiom or $t_i$ is a member of $S$ ($t_i$ is a premise or hypothesis) or $t_i$ follows by \gls{MP} from earlier lines: $\exists j, k < i$ such that $t_k = (t_j \impl t_i)$. \glssymboldefn{psynentails}{$\vdash$}{$\vdash$} \glssymboldefn{ptheorem}{$\vdash$}{$\vdash$} \glsnoundefn{ptheorem}{theorem}{theorems} Say $S$ \emph{proves $t$} or $S$ \emph{syntactically entails $t$} if there's a proof of $t$ from $S$. We denote this by $S \vdash t$. Say $t$ is a theorem if $\emptyset \synentails t$, which we denote $\ptheorem t$.} \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item $\{p \impl q, q \impl r\} \synentails (p \impl r)$. \begin{align*} &(p \impl (q \impl r)) \impl (p \impl q) \impl (p \impl r)) &&\text{(A2)} \\ &(q \impl r) \impl (p \impl (q \impl r)) &&\text{(A1)} \\ &(q \impl r) &&\text{(premise)} \\ &p \impl (q \impl r) &&\text{(MP)} \\ &(p \impl q) \impl (p \impl r) &&\text{(MP)} \\ &p \impl q &&\text{(premise)} \\ &p \impl r &&\text{(MP)} \end{align*} \item $\ptheorem (p \impl p)$. \begin{align*} &p \impl ((p \impl p) \impl p) &&\text{(A1)} \\ &(p \impl ((p \impl p) \impl p)) \impl ((p \impl (p \impl p)) \impl (p \impl p)) &&\text{(A2)} \\ &(p \impl (p \impl p)) \impl (p \impl p) &&\text{(MP)} \\ &p \impl (p \impl p) &&\text{(A1)} \\ &p \impl p &&\text{(MP)} \end{align*} \end{enumerate} \end{example*} \begin{flashcard}[deduction-thm] \begin{proposition}[Deduction Theorem] \label{ded_thm} Given $S \subset \propL$, $p, q \in \propL$, we have \[ S \synentails (p \impl q) \qquad \text{iff} \qquad S \cup \{p\} \synentails q .\] \end{proposition} \fcscrap{ \begin{note*} This shows `$\impl$' really does behave like implication in formal proofs. \end{note*} \begin{note*} To show $\{p \impl q, q \impl r\} \synentails (p \impl r)$, by \cref{ded_thm}, enough to show $\{p \impl q, q \impl r, p\} \synentails r$. This is easy: write down all premises and use (\gls{MP}) twice. \end{note*} } \begin{proof} \cloze{If $S \synentails (p \impl q)$, then write down this \gls{pproof} and add two lines: \begin{align*} &p &&\text{(premise in $S \cup \{p\}$)} \\ &q &&\text{(MP)} \end{align*} to get a \gls{pproof} of $q$ from $S \cup \{p\}$. Now assume $S \cup \{p\} \synentails q$. Let $t_1, t_2, \ldots, t_n = q$ be a \gls{pproof} of $q$ from $S \cup \{p\}$. We show by induction that $S \synentails (p \impl t_i)$. Then done. If $t_i$ is an axiom or $t_i \in S$, then write \begin{align*} &t_i &&\text{(axiom or premise in $S$)} \\ &t_i \impl (p \impl t_i) &&\text{(A1)} \\ &p \impl t_i &&\text{(\gls{MP})} \end{align*} to get a \gls{pproof} of $p \impl t_i$ from $S$. If $t_i = p$ then $S \synentails (p \impl p)$ since $\ptheorem (p \impl p)$. Finally, assume there exists $j, k < i$ such that $t_k = (t_j \impl t_i)$. By induction we can write down \glspl{pproof} of $(p \impl t_j)$, $(p \impl (t_j \impl t_i))$ from $S$. Now just add \begin{align*} &(p \impl (t_j \impl t_i)) \impl ((p \impl t_j) \impl (p \impl t_i)) &&\text{(A2)} \\ &(p \impl t_j) \impl (p \impl t_i) &&\text{(\gls{MP})} \\ &p \impl t_i &&\text{(\gls{MP})} \end{align*} } \end{proof} \end{flashcard} \textbf{Aim:} $\sementails$ and $\synentails$ are the same. This has two parts: \emph{soundness} (if $S \synentails t$, then $S \sementails t$) and \emph{adequacy} (if $S \sementails t$, then $S \synentails t$)