%! TEX root = LST.tex % vim: tw=50 % 27/02/2024 09AM \vspace{-2em} \begin{enumerate}[(1)] \setcounter{enumi}{7} \item \begin{flashcard}[ax-of-replacement] \glsnoundefn{Rep}{(Rep)}{N/A} \prompt{\cloze{(8) }}\textbf{\cloze{Axiom of Replacement} (Rep):} \cloze{\gls{Inf} says that there exist sets containing $0, 1, 2, 3, \ldots$. Are there sets containing $\emptyset, \PP \emptyset, \PP \PP \emptyset, \ldots$? There's a function-like object that sends $0 \mapsto \emptyset$, $1 \mapsto \PP\emptyset$, $2 \mapsto \PP\PP\emptyset, \ldots$. Need an axiom that says that the image of a set under a function-like object is a set. The axiom is: \[ (\pforall t_1) \cdots (\pforall t_n) \bigg[(\pforall x)(\pforall y)(\pforall z)((p \pand \subst p[z / y]) \pimpl y = z)\qquad \] \[ \qquad\pimpl (\pforall x)(\pexists y)(\pforall z)(z \zin y \iff (\pexists u)(u \zin x \pand \subst p[u / x, z / y]))\bigg] \] for any \gls{form} $p$ with $\FV(p) = \{x, y, t_1, \ldots, t_n\}$. We will explain the reasoning below, by discussing function-classes. } \end{flashcard} \end{enumerate} \subsubsection*{Digression on classes} \begin{flashcard}[class-defn] \begin{definition*}[Class] \glsnoundefn{cls}{class}{classes} \cloze{A \emph{class} is a subset $C$ of a \gls{struc} $V$ of the language of \gls{ZF} such that there is a \gls{form} $p$ with $\FV(p) = \{x\}$ such that $p_V = C$, i.e. $x \in C$ if and only if $p(x)$ holds in $V$.} \end{definition*} \end{flashcard} \begin{example*} $V$ is a \gls{cls}: for example take $p$ to be $x = x$. The set of sets of size $1$ is a \gls{cls}: for example, take $p$ to be $(\pexists y)(x = \{y\})$. \end{example*} \begin{flashcard}[proper-class-defn] \begin{definition*}[Proper class] \glsadjdefn{propc}{proper}{\gls{cls}} \cloze{Say the \gls{cls} is a set if $(\pexists y)(\pforall x)(x \zin y \iff p)$ holds in $V$. If $C$ is not a set, we say $C$ is a \emph{proper class}.} \end{definition*} \end{flashcard} \begin{example*} $V$ is a \gls{propc} \gls{cls} (Russell's paradox). \end{example*} \begin{flashcard}[function-class-defn] \begin{definition*}[Function class] \glsnoundefn{funccls}{function-class}{function-classes} \cloze{A \emph{function-class} is a subset $G$ of $V \times V$ such that there's a \gls{form} $p$ with \gls{freev} \glspl{var} $\FV(p) = \{x, y\}$ such that \[ (\pforall x)(\pforall y)(\pforall z)((p \pand \subst p[z / y]) \pimpl y = z) \] holds in $V$ and $G = p_V$, i.e. $(x, y) \in G$ if and only if $p(x, y)$ holds in $V$.} \end{definition*} \end{flashcard} \begin{example*} $G = \{(x, \{x\}) \st x \in V\}$ is the \gls{funccls} mapping $x \mapsto \{x\}$, and is given by $p = (y = \{x\})$. \end{example*} \begin{enumerate}[(1)] \setcounter{enumi}{8} \item \begin{flashcard}[ax-of-foundation] \glsnoundefn{Fnd}{(Fnd)}{N/A} \prompt{\cloze{(9) }}\textbf{\cloze{Axiom of Foundation} (Fnd):} \cloze{We want to avoid pathological behaviour like $x \zin x$, i.e. $\{x\}$ has no $\zin$-minimal member, or $x \zin y \pand y \zin x$ (in which case $\{x, y\}$ has no $\zin$-minimal member). \gls{Fnd} says that every non-empty set has an $\zin$-minimal member: \[ (\pforall x)(\pnot x = \emptyset \pimpl (\pexists y)(y \zin x \pand (\pforall z)(z \zin x \pimpl \pnot z \zin y))) \] } \end{flashcard} \end{enumerate} The above axioms and axiom-schemes (1)-(9) form \gls{ZF}. The \gls{aoc} (AC) is not included: \[ (\pforall x)((\pforall y)(y \zin x \pimpl \pnot y = \emptyset) \pimpl (\pexists f)((f : X \to \bigcup x) \pand (\pforall y)(y \zin x \pimpl f(y) \zin y))) .\] \glsnoundefn{ZFC}{ZFC}{N/A} We write ZFC for \gls{ZF} + \glsref[aoc]{AC}. For the rest of this chapter we work within \gls{ZF}. \textbf{Aim:} to describe the set-theoretic universe, i.e. any \gls{model} $V$ of \gls{ZF}. \begin{flashcard}[transitive-set-defn] \begin{definition*}[Transitive set] \glsadjdefn{transset}{transitive}{set} \cloze{We say a set $x$ is \emph{transitive} if every membet of $x$ is a member of $x$. So ``$x$ is transitive'' is shorthand for \[ (\pforall y)((\pexists z)(z \zin x \pand y \zin z) \pimpl y \zin x) .\] Equivalently, $\bigcup x \subset x$.} \end{definition*} \end{flashcard} \begin{note*} This is \emph{not} the same as saying that $\zin$ is a \gls{ltrans} relation on $x$. \end{note*} \begin{example*} $\omega$ is \gls{transset}. We need to show that $x \subset \omega$ for all $x \zin \omega$. Form the set $z = \{y \zin \omega \st y \subset \omega\}$. Check $z$ is a successor set, so $z = \omega$. Similarly, \[ \{x \in \omega \st \text{``$x$ is \gls{transset}''}\} \] is a successor set ($\bigcup x^+ = x$) so it is $\omega$. So every element of $\omega$ is a \gls{transset} set. \end{example*} \begin{flashcard}[transitive-closure-lemma] \begin{lemma} Every set $x$ is contained in a \gls{transset} set, i.e. \[ (\pforall x)(\pexists y)(\text{``$y$ is transitive''} \pand x \subset y) .\] \end{lemma} \fcscrap{ \begin{remark*} \glssymboldefn{TC}{TC$(x)$}{TC$(x)$} The intersection of \gls{transset} sets if \gls{transset}, so $x$ is contained in a smallest \gls{transset} set, called the \emph{transitive closure} of $x$, denoted by $\TC(x)$. \end{remark*} } \cloze{\textbf{Idea:} If $x \subset y$, $y$ \gls{transset}, then $\bigcup x \subset y$ and so $\bigcup \bigcup x \subset y$, $\bigcup \bigcup \bigcup x \subset y$, \ldots. Want to form \[ \bigcup\left\{x, \bigcup x, \bigcup \bigcup x, \ldots\right\} \] Is this a set? Yes, by \gls{Rep}. We need a \gls{funccls} $0 \mapsto x$, $1 \mapsto \bigcup x$, $2 \mapsto \bigcup \bigcup x$, \ldots.} \begin{proof} \cloze{Say ``$f$ is an attempt'' to mean: \begin{align*} \text{``$f$ is a function''} \pand \text{``$\dom f \in \omega$''} \pand \text{``$f(0) = x$''} \\ \pand (\pforall m)(\pforall n)[((m \in \dom f) \pand (n \in \dom f) \pand (n = m^+)) \pimpl (f(n) = \bigcup f(m))] \end{align*} We prove by $\omega$-induction that: \[ (\pforall f)(\pforall g)(\pforall n)((\text{``$f$ is an attempt''} \pand \text{``$g$ is an attempt''} \pand (n \zin \dom f \cap \dom g)) \pimpl (f(n) = g(n))) \tag{$*$} \label{lec18_l200} \] and \[ (\pforall n)(n \zin \omega \pimpl (\pexists f)(\text{``$f$ is an attempt''} \pand n \in \dom f)) \tag{$**$} \label{lec18_l204} \] Define a \gls{funccls} via the formula $p(y, z)$: \[ (\pexists f)(\text{``$f$ is an attempt''} \pand f(y) = z) .\] By \eqref{lec18_l200} we do have \[ (\pforall y)(\pforall z)(\pforall w)((p \pand \subset p[w / z]) \pimpl w = z) .\] By \gls{Rep} can form $w = \{z \st (\pexists y)(y \zin \omega \pand p(y, z))\}$ ($w = \{x, \bigcup x, \bigcup \bigcup x, \ldots\}$) and by \gls{Un} can form $t = \bigcup w$. Then $x \subset t$, since $x \zin w$ ($\{(0, x)\}$ is an attempt). Given $a \zin t$, we have $z \zin w$, $a \zin z$. There's an attempt $f$ and $n \zin w$ such that $z = f(n)$. By \eqref{lec18_l204}, there's an attempt $g$ with $n^+ \in \dom g$. Then $n \in \dom g$, so \[ \bigcup z = \bigcup f(n) \stackrel{\eqref{lec18_l200}}{=} \bigcup g(n) = g(n^+) \zin w \] hence $a \subset t$.} \end{proof} \end{flashcard}