%! TEX root = LST.tex % vim: tw=50 % 24/02/2024 09AM \begin{enumerate}[(1)] \setcounter{enumi}{2} \item \begin{flashcard}[empty-ax] \glsnoundefn{Emp}{(Emp)}{N/A} \prompt{\cloze{(3) }}\textbf{\cloze{Empty set axiom} (Emp):} \cloze{ \[ (\pexists x)(\pforall y)(\pnot y \zin x) \] By \gls{Ext}, this set is unique which we denote by $\emptyset$. Formally, we add a constant $\emptyset$ to the language with the sentence $(\pforall y)(\pnot y \zin \emptyset)$. } \end{flashcard} \item \begin{flashcard}[pair-set-ax] \glsnoundefn{Pair}{(Pair)}{N/A} \prompt{\cloze{(4) }}\textbf{\cloze{Pair set axiom} (Pair):} \cloze{ ``We can form unordered pairs''. \[ (\pforall x)(\pforall y)(\pexists z)(\pforall t) ((t \zin z) \pimpl (t = x \por t = y)) .\] Unique by \gls{Ext}. We denote this set $z$ by $\{x, y\}$. Define singletons as $\{x, x\}$. The following an be proved: \[ (\pforall x)(\pforall y)(\{x, y\} = \{y, x\}) .\] We can use \gls{Pair} to define ordered pairs: for $x, y$ the ordered pair $(x, y) = \{\{x\}, \{x, y\}\}$. One can then prove that: \[ (\pforall x)(\pforall y)(\pforall t)(\pforall z) ((x, y) = (t, z) \iff (x = t \pand y = z)) .\] } \end{flashcard} We introduce abbreviations: \begin{itemize} \item ``$x$ is an ordered pair'' for $(\pexists y)(\pexists z)(x = (y, z))$. \item ``$f$ is a function'' for \[ (\pforall x)(x \zin f \pimpl x \text{ is an ordered pair}) \] \[ \pand (\pforall x)(\pforall y)(\pforall z)(((x, y) \zin f \pand (x, z) \zin f) \pimpl (y = z)) \] \item ``$x = \dom f$'' for \[ \text{`$f$ is a function'} \pand (\pforall y)(y \zin x \iff (\pexists z)((y z) \zin f)) \] \item ``$f$ is a function from $x$ to $y$'' for \[ (x = \dom f) \pand (\pforall t) ((\pexists z)(z, t) \zin f \pimpl t \zin y) \] \end{itemize} \item \begin{flashcard}[union-set-ax] \glsnoundefn{Un}{(Un)}{N/A} \prompt{\cloze{(5) }}\textbf{\cloze{Union axiom} (Un):} \cloze{ \[ (\pforall x)(\pexists y)(\pforall z)(z \zin y \iff (\pexists t)(t \zin x \pand z \zin t)) .\] Denote this set $y$ by $\bigcup x$. } \end{flashcard} \begin{example*} \vspace{0.5em} For $x, y$, $t \zin \{x, y\} \iff (t \zin x \por t \zin y)$. We also write $\bigcup \{x, y\} = x \cup y$. \end{example*} \begin{remark*} \vspace{0.5em} No new axiom eeded for intersection as this can be formed by \gls{Sep}. So the following line follows from axioms so far: \[ (\pforall x)(\pnot x = \emptyset \pimpl (\pexists y)(\pforall z)(z \zin y \iff (\pforall t)(t \zin x \pimpl z \zin t)) .\] Denote the set $y$ by $\bigcap x$. To prove this, given $x$, form \[ y = \{z \zin \bigcup x : (\pforall t)(t \zin x \pimpl z \zin t)\} \] by \gls{Sep}. Check that \[ (\pforall z)(z \zin y \iff (\pforall t)(t \zin x \pimpl z \zin t)) .\] Given $x, y$, denote $\bigcap \{x, y\}$ by $x \cap y$. \end{remark*} \item \begin{flashcard}[power-set-ax] \glsnoundefn{Pow}{(Pow)}{N/A} \prompt{\cloze{(6) }}\textbf{\cloze{Power set axiom} (Pow):} \cloze{ \[ (\pforall x)(\pexists y)(\pforall z)(z \zin y \iff z \subset x) \] where $z \subset x$ is an abbreviation for $(\pforall t)(t \zin z \pimpl t \zin x)$. We denote $y$ by $\PP x$. We can now form Cartesian product $x \times y$ for sets $x, y$: an element of $x \times y$ is an ordered pair $(s, t)$ where $s \zin x$, $t \zin y$. Note that \[ (s, t) = \{\{x\}, \{x, y\}\} \zin \PP \PP(x \cup y) ,\] so by \gls{Sep} we can form \[ \{z \zin \PP\PP(x \cup y) : (\pexists s)(\pexists t)(s \zin x \pand t \zin y \pand z = (s, t)\} .\] We can also form, from sets $x, y$ \[ y^x = \{f \zin \PP(x \times y) : (f : x \to y)\} ,\] which is the set of all functions from $x$ to $y$. } \end{flashcard} \item \begin{flashcard}[ax-of-infty] \glsnoundefn{Inf}{(Inf)}{N/A} \prompt{\cloze{(7) }}\textbf{\cloze{Axiom of infinity} (Inf):} \cloze{ From axioms so far, any model $V$ will be infinite, for example \[ \emptyset, \PP \emptyset, \PP\PP \emptyset, \ldots \] are all distincnt elements of $V$. For a set $x$ define the successor of $x$ as $x^+ = x \cup \{x\}$. Then \[ \emptyset, \emptyset^+, \emptyset^{++}, \ldots \] are distinct elements of $V$: \[ \emptyset^+ = \{\emptyset\}, \emptyset^{++} = \{\emptyset, \{\emptyset\}\}, \emptyset^{+++} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \ldots \] We write $0 = \emptyset$, $1 = \emptyset^+$, $2 = \emptyset^{++}, \ldots$. We have a copy of $\NN_0$ in $V$. From the outside, $V$ is infinite. From the inside, $V$ is not a set: $\pnot (\pexists x)(\pforall y)(y \zin x)$ (Russell's paradox). Abbreviate ``$x$ is a successor set'': \[ \emptyset \zin x \pand (\pforall y)(y \zin x \pimpl y^+ \zin x) .\] Axiom (Inf) says: \[ \boxed{(\pexists x)(\text{$x$ is a succcessor set})} .\] The intersection of successor sets is a successor set. So we can construct ``smallest'' successor set, i.e. we can prove \[ (\pexists x)((x \text{ is a successor set}) \pand (\pforall y)(\text{$y$ is a successor set} \pimpl x \subset y)) \] (Pick any sucessor set $z$, let $x = \bigcap \{y \zin \PP z \st \text{$y$ is a sucessor set}\}$. $x$ is then a successor set, and if $y$ is any successor set then $x \subset (y \cap z)$.) We denote the smallest successor set by $\omega$. If $x \subset \omega$ is a successor set then $x = \omega$, i.e. \[ (\pforall x)(((x \subset \omega) \pand (\emptyset \zin x) \pand (\pforall y)(y \zin x \pimpl y^+ \zin x)) \pimpl x = \omega) .\] This is true induction. We can prove by induction: \begin{itemize} \item $(\pforall x)(x \zin \omega \pimpl \pnot x^+ = \emptyset)$ \item $(\pforall x)(\pforall y)(((x \zin \omega) \pand (y \zin \omega) \pand (x^+ = y^+) \pimpl x = y))$. \end{itemize} We can define abbreviations: \begin{itemize} \item ``$x$ is finite'' for $(\pexists y)((y \zin \omega) \pand (\pexists f)(f : x \to y \pand \text{$f$ is a bijection}))$. \item ``$x$ is countable'' for $(\pexists f)(f : x \to \omega \pand \text{$f$ is injective})$ \end{itemize} } \end{flashcard} \end{enumerate}