%! TEX root = LST.tex % vim: tw=50 % 20/02/2024 09AM \vspace{-4em} If $S$ is the \gls{theory} of fields, then $A$ is not a \gls{model}: \[ 1 + 1 = (1 + 0) + 1 \] is provable from $S$, but not satisfied in $A$: \[ (1 + 1)_A = 1 + 1, \qquad ((1 + 0) + 1)_A = (1 + 0) + 1 .\] Easy remedy: define $s \sim t$ on $A$ if and only if $S \ssynentails (s = t)$, and then replace $A$ with $A / \sim$. Two issues remain. Let $S$ be the \gls{theory} of fields plus the sentence $(1 + 1 = 0 \por (1 + 1) + 1 = 0)$ (the \gls{theory} of fields of characteristic $2$ or $3$). $S \not\ssynentails 1 + 1 = 0$, so in our new $A$ \[ 1_A +_A 1_A = [1] +_A [1] = [1 + 1] \neq [0]_A = 0_A .\] Similarly \[ (1_A +_A 1_A) +_A 1_A \neq 0_A .\] So $A$ is not a \gls{model} of $S$. Remedy: extend $S$ to a \gls{cons} \gls{theory} $\ol{S} \supset S$ such that for every \gls{sent} $p$, either $\ol{S} \ssynentails p$ or $\ol{S} \ssynentails \pnot p$. Such a \gls{theory} is called \emph{complete}. Now consider $S$ being the \gls{theory} of fields plus $((\pexists x)(xx = 1 + 1))$. $A$ is not a \gls{model} since there's no \gls{closed} \gls{term} $t$ such that \[ [t] \cdot [t] = [1] +_A [1] = 1_A +_A 1_A \] because $S \not\ssynentails (t \cdot = 1 + 1)$. We say $S$ has \emph{witnesses} if for every \gls{sent} of the form $(\pexists p)$, where $\FV(p) = \{x\}$, such that $S \ssynentails (\pexists x) p$, there exists a \gls{closed} \gls{term} $t$ such that $S \ssynentails \subst p[t/x]$. We will enlarge $S$ to a \gls{cons} \gls{theory} $\ol{S}$ such that $\ol{S}$ will have witnesses for $S$. \begin{proof}[Proof of \cref{fo_model_existence} (non-examinable)] We start with two observations. Let $S$ be a first-order \gls{cons} \gls{theory} in a \gls{folang} $L = L(\pOmega, \pPi)$. For any \gls{sent} $p$, at least one of $S \cup \{p\}$ or $S \cup \{\pnot p\}$ is \gls{cons}. Otherwise they both $\ssynentails \false$, so by \nameref{fo_ded_thm}, $S \ssynentails \pnot p$ and $S \ssynentails \pnot \pnot p$. Hence $S \ssynentails \false$ by \gls{MP}, contradiction. An argument using \nameref{ZL} gives a \gls{cons} $\ol{S} \supset S$ such that for every \gls{sent} $p$, either $p \in \ol{S}$ or $\pnot p \in \ol{S}$. So $\ol{S}$ is complete. Now assume $S$ is \gls{cons} and $S \ssynentails (\exists x) p$ for some $p$ with $\FV(p) = \{x\}$. We add a new constant $c$ to $L$ ($\pOmega \to \pOmega \cup \{c\}$). Then $S \cup \{\subst p[c / x]\}$ is \gls{cons}. If not, then $S \cup \{\subst p[c / x]\} \ssynentails \false$, so $S \ssynentails \pnot \subst p[c / x]$. Since $c$ does not occur in $S$, we get $S \ssynentails \pnot p$ (put $x$ back in place of $c$ in the \gls{fproof}). So by (Gen), $S \ssynentails (\pforall x) \pnot p$. By assumption $S \ssynentails \pnot (\pforall x)\pnot p$. So $S \ssynentails \false$ by \gls{MP}, contradiction. Do this for every \gls{sent} $(\pexists p)$ that is \glsref[fproof]{provable} from $S$ to get a new \gls{folang} $\ol{L} = L(\pOmega \cup C, \pPi)$ and a \gls{cons} \gls{theory} $\ol{S}$ in $\ol{L}$ such that if $p$ is a \gls{form} in $L$ with $\FV(p) = \{x\}$ and $S \ssynentails (\pexists x) p$, then there exists a \gls{closed} \gls{term} $t$ in $\ol{L}$ such that $\ol{S} \ssynentails \subst p[t / x]$. Now start with a \gls{cons} \gls{theory} $S$ in $L = L(\pOmega, \pPi)$, we inductively define languages $L_n = (\pOmega \cup C_1 \cup \cdots \cup C_n, \pPi)$, each $C_k$ is a new set of constants, and \glspl{theory} \[ S = S_0 \subset S_1 \subset T_1 \subset S_2 \subset T_2 \subset \cdots \] such that $\forall n \in \NN$, $S_n$ is a complete \gls{cons} \gls{theory} in $L_{n - 1}$ and $T_n$ is a \gls{cons} \gls{theory} in $L_n$ which has witnesses for $S_n$. Let $L^* = \bigcup_n L_n$, $S^* = \bigcup_n S_n$. It's straightforward to check that $S^*$ is a \gls{cons} \gls{theory} in $L^*$ and $S^*$ is complete and has witnesses. A \gls{model} for $S^*$ in the \gls{folang} $L^*$ will be a \gls{model} of $S$ when viewed as a \gls{struc} in the \gls{folang} $L$. So without loss of generality, $S$ is \gls{cons} in $L$ and has witnesses and is complete. Let $A$ be the set of equivalence classes of \gls{closed} \glspl{term} in $L$ where $s \sim t \iff S \ssynentails (s = t)$. For $\omega \in \pOmega$ with $\arity(\omega) = n$, define \[ \omega_A : A^n \to A, \omega_A([t_1], \ldots, [t_n]) = [\omega t_1 \ldots t_n] .\] For $\varphi \in \pPi$ with $\arity(\varphi) = n$, define \[ \varphi_A : A^n \to \{0\}, \varphi_A([t_1], \ldots, [t_n]) = 1 \iff S \ssynentails \varphi t_1 \ldots t_n .\] An easy induction shows that for a \gls{closed} \gls{term} $s$, $s_A = [s]$. Next, for a \gls{sent} $p$, $S \ssynentails p \iff p_A = 1$ (i.e. $p$ holds in $A$). To prove this, use induction on the \gls{folang}. Then $A$ is a \gls{model} of $S$. \end{proof} \begin{corollary}[Compactness] \label{fo_compactness} Let $S$ be a first-order \gls{theory}. If every finite subset of $S$ has a \gls{model}, then $S$ has a \gls{model}. \end{corollary} \begin{proof} If $S \ssementails \false$, then $S \ssynentails \false$. \glsref[fproof]{Proofs} are finite, so there exists finite $S' \subset S$ such that $S' \ssynentails \false$. Hence $S' \ssementails \false$, contradiction. \end{proof} \subsubsection*{Applications} Can we axiomatise finite groups? In other words, does there exist a \gls{theory} $T$ whose \glspl{model} are the finite groups? For $n \in \NN$, let \[ t_n = (\pexists x_1) \cdots (\pexists x_n) (\pforall x)(x = x_1 \por x = x_2 \por \cdots \por x = x_n) .\] So $t_n$ means ``contains at most $n$ elements''. Want \[ T = \text{\gls{theory} of groups} \cup \{t_1 \por t_2 \por t_3 \por \cdots \} .\] But $t_1 \por t_2 \por t_3 \por \cdots$ is not a \gls{sent} (because it is not finite). \begin{flashcard}[finite-groups-not-axiomatisable-coro] \begin{corollary} Finite groups are not axiomatisable as a first-order \gls{theory}. \end{corollary} \begin{proof} \cloze{Assume it is, and let $T$ be such a \gls{theory}. Consider $T' = T \cup \{\pnot t_1, \pnot t_2, \pnot t_3, \ldots\}$ where $t_n$ are defined by \[ t_n = (\pexists x_1) \cdots (\pexists x_n) (\pforall x)(x = x_1 \por x = x_2 \por \cdots \por x = x_n) .\] Every finite subset of $T'$ has a \gls{model}: $C_N$ for some large $N$ (cyclic group of order $N$). By \cref{fo_compactness}, $T'$ has a \gls{model}, but this model must be infinite, hence not a finite group.} \end{proof} \end{flashcard} \begin{flashcard}[arbitrarily-large-models-infinite-models-coro] \begin{corollary} If a first-order \gls{theory} $T$ has arbitrarilty large finite \glspl{model}, then it has infinite \glspl{model}. \end{corollary} \begin{proof} \cloze{Consider \[ T' = T \cup \{(\pexists x_1)(\pexists x_2)(x_1 \neq x_2), (\pexists x_1)(\pexists x_2)(\pexists x_3)(x_1 \neq x_2 \pand x_2 \pand x_3 \pand x_1 \neq x_2), \ldots\} .\] By assumption, every finite subset of $T'$ has a \gls{model}, so $T'$ has a \gls{model}. A \gls{model} of $T'$ is just an infinite \gls{model}.} \end{proof} \end{flashcard}