%! TEX root = LST.tex % vim: tw=50 % 15/02/2024 09AM \item \glsref[theory]{Theory} of \courseref[rings]{GRM} with $1$: \glsref[folang]{Language}: \[ \pOmega = \{+, 0, -, \times , 1\}, \quad \pPi = \emptyset ,\] with \glspl{arity} $2, 0, 1, 2, 0$. \glsref[theory]{Theory}: \begin{align*} &(\pforall x)(\pforall y)(\pforall z)((x + y + z = x + (y + z)) \\ &(\pforall x)(x + 0 = x \pand 0 + x = x) \\ &(\pforall x)((x + (-x) = 0) \pand ((-x) + x = 0)) \\ &(\pforall x)(\pforall y) (x + y = y + x) \\ &(\pforall x)(\pforall y)(\pforall z)((x \times y) \times z = x \times (y \times z)) \\ &(\pforall x)(1 \times x \pand x \times 1 = x) \\ &(\pforall x)(\pforall y)(\pforall z)((x \times (y + z) = x \times y + x \times z) \pand ((x + y) \times z = x \times z + y \times z)) \end{align*} The \glspl{model} are exactly rings with $1$. \item Fields: \glsref[folang]{Language}: same as for rings with $1$. \glsref[theory]{Theory}: same as for rings with $1$, plus the additional \glspl{sent}: \begin{align*} &(\pforall x)(\pforall y)(x \times y = y \times x) \\ &\pnot (0 = 1) \\ &(\pforall x)(\pnot (x = 0) \pimpl (\pexists y)(xy = 1)) \end{align*} The \glspl{model} are exactly fields. \item \courseref[Graph theory]{GT}: \glsref[folang]{Language}: \[ \pOmega = \emptyset, \quad \pPi = \{a\} \] with \gls{arity} $2$ ($a$ will mean ``is adjacent to''). \glsref[theory]{Theory}: \begin{align*} &(\pforall x)\pnot (a(x, x)) \\ &(\pforall x)(\pforall y)(a(x, y) \pimpl a(y, x)) \end{align*} The \glspl{model} are exactly graphs. \item Propositional theories: \glsref[folang]{Language}: \[ \pOmega = \emptyset, \quad \pPi = \text{some set} \] with $\arity(p) = 0 ~\forall p \in \pPi$. A \gls{struc} is a non-empty set $A$ together with $p_A \subset A^0$ for all $p \in \pPi$ (equivalently $p_A : A^0 \to \{0, 1\}$, equivalently $p_A \in \{0, 1\}$, since $A^0$ is a set of size $1$). A \gls{struc} is a non-empty set $A$ together with a function $v : \pPi \to \{0, 1\}$. Every $p \in \pPi$ is an \gls{atf}. \glsref[form]{Formulae} without \glspl{var} are precisely elements of $\propL(\pPi)$ as defined in \cref{sec1}, i.e. they are \glspl{prop} in $\pPi$. \glsref[interpf]{Interpreting} these in a \gls{struc} $A$ is just a function $v : \propL(\pPi) \to \{0, 1\}$ obtained from $v : \pPi \to \{0, 1\}$ as in \cref{sec1}, i.e. a \gls{vtion}. A \emph{propositional theory} is a set $S$ of \glspl{form} not using \glspl{var}. A \gls{model} for $S$ is a non-empty set $A$ with a \gls{vtion} $v : \propL(\pPi) \to \{0, 1\}$ such that $\propv(s) = 1 ~\forall s \in S$ (here $A$ is irrelevant). \end{enumerate} \begin{flashcard}[sementail-sentence-defn] \begin{definition*}[Semantic entailment of sentences] \glssymboldefn{ssementails}{$\models$}{$\models$} \cloze{For a set $S$ of \glspl{sent} and a \gls{sent} $t$ (in a \glsref[folang]{first-order language} $L$), we say \emph{$S$ (semantically) entails $t$} if $t$ is satisfied in every \gls{model} of $S$. In this case we write $S \models t$.} \end{definition*} \end{flashcard} \begin{example*} \phantom{} \item Let $S$ be the \gls{theory} of groups (in the \gls{folang} of groups). Then \[ S \sementails ((\pforall x)(x \cdot x = e) \pimpl (\pforall x)(\pforall y)(xy = yx)) \] \item Let $S$ be the \gls{theory} of fields (in the \gls{folang} of rings with $1$). Then \[ S \sementails ((\pforall x)(\pnot (x = 0) \pimpl (\pforall y)(\pforall z)((xy = 1 \pand xz = 1) \pimpl (y = z))) \] \end{example*} \vspace{-1em} Next, we want to define $S \sementails t$ for \glspl{form}. \begin{example*} Let $T$ be the \gls{theory} of fields (in the \gls{folang} of rings with $1$). Let $S = T \cup \{\pnot (x = 0)\}$, $t = (\pexists y)(xy = 1)$. Does $S \sementails t$? Yes. Suppose $F$ is a \gls{struc} in which all members of $S$ are true. So $F$ is a field and for $u = \pand (x = 0)$, \[ u_F = \{a \in F \mid a \neq 0_f\} = F ,\] contradiction. Also, we'll soon define ``$S \synentails t$'', then $S \synentails t$ if and only if $T \synentails \pnot(x = 0) \pimpl (\pexists y)(xy = 1)$. \end{example*} \begin{flashcard}[sementail-formula-defn] \begin{definition*}[Semantic entailment of formulae] \glssymboldefn{fsementails}{$\models$}{$\models$} \cloze{Let $S$ be a set of \glspl{form} and $t$ be a \gls{form} in a \gls{folang} $L$. For every \gls{var} that occurs \gls{freev} in $S \cup \{t\}$, introduce a constant $c_x$ (add it to $\pOmega$). Let $L'$ be our new \gls{folang}. For a \gls{form} $p$, let $p'$ be the \gls{form} obtained from $p$ by replacing \gls{freev} occurences of $x$ in $p$ by $c_x$, for every $x$. Let $S' = \{s' \st s \in S\}$. Say \emph{$S$ (semantically) entails $t$}, written $S \models t$, if $S' \models t'$.} \end{definition*} \end{flashcard} \begin{flashcard}[substitution-defn] \begin{notation*}[Substitutions] \glssymboldefn{subst}{$p[t / x]$}{$p[t / x]$} \cloze{If $x$ occurs \gls{freev} in a \gls{form} $p$ and $t$ is a \gls{term} that contains no \gls{var} that occurs \gls{bound} in $p$, we let $p[t / x]$ be the \gls{form} obtained from $p$ by replacing \gls{free} occurences of $x$ in $p$ by $t$.} \end{notation*} \end{flashcard} \begin{example*} In the \gls{folang} of groups: let $p = (\pforall y)(mxx = y)$. Then: \begin{align*} &t = mzz && \subst p[t / x] = (\pforall y)(mmzzmzz = y) \\ &t = mzy && \text{cannot be used} \\ &t = mxx && \subst p[t / x] = (\pforall y)(mmxxmxx = y) \end{align*} \end{example*} \subsubsection*{Syntactic entailment} \begin{flashcard}[fo-axioms-defn] \begin{definition*}[Axioms of first-order logic] \phantom{} \cloze{ \begin{enumerate}[(A1)] \item[(A1)] $p \impl (q \impl p)$ ($p, q$ are \glspl{form}). \item[(A2)] $(p \impl (q \impl r)) \impl ((p \impl q) \impl (p \impl r))$ ($p, q, r$ any \glspl{form}). \item[(A3)] $\pnot \pnot p \impl p$ ($p$ any \gls{form}). \item[(A4)] $(\pforall x)(x = x)$. \item[(A5)] $(\pforall x)(\pforall y)((x = y) \pimpl (p \pimpl \subst p[y / x]))$ ($x, y$ distinct \glspl{var}, $p$ a \gls{form}, $x \in \FV(p)$, $y$ does not occur \gls{bound} in $p$). \item[(A6)] $((\pforall x) p) \pimpl \subst p[t / x]$ ($p$ \gls{form} $x \in \FV(p)$, $t$ a \gls{term}, no variable in $t$ occurs \gls{bound} in $p$). \item[(A7)] $(\pforall x)(p \pimpl q) \pimpl (p \impl (\pforall x) q)$ ($p, q$ \glspl{form}, $x \notin \FV(p)$, $x \in \FV(q)$). \end{enumerate}} \end{definition*} \end{flashcard} \begin{note*} Every axiom is a \gls{taut} ($t$ is a \gls{taut} if $\emptyset \fsementails t$, i.e. $t$ holds in every \gls{struc}). \end{note*} \begin{flashcard}[rules-of-deduc-first-order] \subsubsection*{Rules of deduction} \cloze{ \begin{enumerate}[Modus ponens (MP)] \item[Modus ponens (MP)] From $p$ and $p \impl q$, can deduce $q$. \item[Generalisation (Gen)] From $p$ such that $x \in \FV(p)$, can deduce $(\pforall x) p$ provided $x$ did not occur \gls{free} in any of the premises used in the proof of $p$. \end{enumerate} } \end{flashcard}