%! TEX root = LST.tex % vim: tw=50 % 10/02/2024 09AM \subsubsection*{** Non-examinable **} \begin{definition*}[Chain-complete] A \gls{poset} $X$ is \emph{chain-complete} if $X \neq \emptyset$ and every \gls{chain} has a supremum. \end{definition*} \begin{example*} Every complete \gls{poset} is chain-complete. Finite non-empty \glspl{poset} are chain-complete. If $S$ is a \gls{poset}, then \[ X = \{C \subset C \st \text{$C$ is a chain}\} \] ordered by $\subset$ is chain-complete, but not complete in general. \end{example*} \begin{definition*}[Inflationary function] A function $f : X \to X$, $X$ a \gls{poset} is \emph{inflationary} if $x \ple f(x)$ for all $x \in X$. \end{definition*} \begin{theorem*}[Bourbak-Witt fixed point theorem] \label{BWfp} If $X$ is chain-complete and $f : X \to X$ is inflationary, then $f$ has a fixed point. \end{theorem*} \begin{proof}[Proof 1 (with \gls{aoc})] By \nameref{ZL}, $X$ has a \gls{pomaxel}. Then $x \ple f(x)$, so $x = f(x)$. \end{proof} \begin{proof}[Proof 2 (without \gls{aoc})] Fix $x _0 \in X$. Let $\gamma = \hartgamma(X)$. Define $g : \gamma \to X$ by recursion: \begin{itemize} \item $g(0) = x_0$ \item $g(\alpha \opl 1) = f(g(\alpha))$ \item $g(\lambda) = \sup\{g(\alpha)\st \alpha \olt \lambda \}$ ($\lambda \neq 0$ \glsref[limord]{limit}) \end{itemize} By \gls{induction} $\forall \alpha \olt \gamma$, $g(\alpha) \ple g(\alpha \opl 1)$ Either there exists $\alpha \olt \gamma$ with $g(\alpha \opl 1) = g(\alpha)$. Then $g(\alpha)$ is a \gls{fp} of $f$. Otherwise $g$ is injective, which would contradict \nameref{hartogs}. \end{proof} \begin{remark*} \glsref[aoc]{Axiom of Choice} and \nameref{BWfp} implies \nameref{ZL}. \nameref{BWfp} is sometimes called ``the choice-free part of the proof of \nameref{ZL}''. \end{remark*} \begin{proof}[Proof of Remark] Let $X$ be a \gls{poset} in which every \gls{chain} has an \gls{ub}. \textbf{Case 1:} $X$ is chain-complete. Assume $X$ has no \gls{pomaxel}. Fix a choice function $g ; (\PP X) \setminus \{\emptyset\} \to X$. Define \[ f : X \to X ,f(x) = g(\{y \in X \st x < y\}) .\] Then $x \plt f(x) ~\forall x \in X$, contradicting \nameref{BWfp}. \textbf{Case 2:} General case. We first prove that $\mathcal{C} = \{C \subset X \st \text{$C$ is a \gls{chain}}\}$ has a \gls{pomaxel}. (This is the Hausdorff Maximality Principle). Follows from Case 1, since $\mathcal{C}$ is chain-complete. Let $C$ be a maximal chain in $X$. Let $x$ be an \gls{ub} of $C$. If $x \plt y$ in $X$, then $C \cup \{y\}$ is a \gls{chain} which is $\supsetneq C$, contradicting maximality. So $x$ is \gls{pomaxel}. \end{proof} Lattices, Boolean algebras -- not covered (for now) \textbf{This is the end of the non-examinable part.} \newpage \section{First-order Predicate Logic} \label{sec4} In \nameref{sec1} we had a set $\propP$ of \glspl{primp} and then we combined them using logical connectives $\impl, \false$ (and shorthands $\pand, \por, \pnot, \true$) to form the language $\propL = \propL(\propP)$ of all (compound) \glspl{prop}. We attached no meaning to \glspl{primp}. \textbf{Aim:} To develop languages to describe a wide range of mathematical theorems. We will replace \glspl{primp} with mathematical statements. \begin{example*} In language of groups: \[ m(x, m(y, z)) = m(m(x, y), z), \qquad m(x, i(x)) = e .\] In language of \glspl{poset}: \[ x \le y .\] \end{example*} \vspace{-1em} \glsnoundefn{arity}{arity}{arities} This will need variables ($x, y, z, \ldots$), operation symbols ($m, i, e$ with arities $2, 1, 0$ respectively) and predicates (for example $\le$ with arity $2$). Note that ``arity'' means the number of elements that the function takes as input. We will then combine these to build formulae: \begin{example*} In the language of groups: \[ (\forall x)(m(x, i(x)) = e) .\] In the language of \glspl{poset}: \[ (\forall x)(\forall y)(\forall z)((x \le y \wedge y \le z) \implies (x \le z)) .\] \end{example*} \vspace{-1em} \glsref[vtion]{Valuations} will be replaced by a structure, a set $A$ and ``truth-functions'' $p_A : A^n \to \{0, 1\}$ for every formula $p$. If we have a set $S$ of formulae, a model of $S$ is a structure satisfying all $p \in S$. Then we will define $S \models t$ in the same way as in \cref{sec1}. $S \vdash t$ will be the same as in \cref{sec1} but more complex. \begin{flashcard}[first-order-language-defn] \begin{definition*}[Language in first-order logic] \glsnoundefn{folang}{language}{languages} \glssymboldefn{pOmega}{$\Omega$}{$\Omega$} \glssymboldefn{pPi}{$\Pi$}{$\Pi$} \glssymboldefn{arity}{$\alpha$}{$\alpha$} \hspace{0.5em} \cloze{A \emph{language} in first-order logic is specified by two disjoint sets $\Omega$ (the \emph{set of operation symbols}) and $\Pi$ (the \emph{set of predicates}) together with an arity function $\alpha : \Omega \cup \Pi \to \NN_0 = \{0\} \cup \NN$. \glsnoundefn{var}{variable}{variables} The language $L = L(\Omega, \Pi, \alpha)$ consists of the following: \begin{enumerate}[\bfseries Variables:] \item[\bfseries Variables:] Countably infinite sets disjoint from $\Omega$ and $\Pi$. We denote variables as $x_1, x_2, x_3, \ldots$ (or $x, y, z, \ldots$). \item[\bfseries Terms:] \glsnoundefn{term}{term}{terms} Defined inductively: \begin{enumerate}[(i)] \item Every variable is a term \item If $\omega \in \Omega$, $n = \alpha(\omega)$ and $t_1, \ldots, t_n$ terms, then $\omega t_1 \ldots t_n$ is a term (could write $\omega(t_1, \ldots, t_n)$). \end{enumerate} \end{enumerate} } \end{definition*} \end{flashcard} \begin{example*} The language of groups consists of $\pOmega = \{m, i, e\}$, $\pPi = \emptyset$, $\arity(m) = z$, $\arity(i) = 1$, $\arity(e) = 0$. Some terms: \[ m\ub{x}_{t_1}\ub{myz}_{t_2}, \qquad mmxyz, \qquad mxix, \qquad e .\] \end{example*} \begin{note*} Every operation symbol of \gls{arity} $0$ is a term, called a \emph{constant}. \end{note*} \begin{flashcard}[atomic-formulae-defn] \begin{definition*}[Atomic formula] \glsnoundefn{atf}{atomic formula}{atomic formulae} \cloze{There are two types of \emph{atomic formula}: \begin{enumerate}[(i)] \item If $s, t$ are \glspl{term}, then $(s = t)$ is an atomic formula. \item If $\varphi \in \pPi$ with $\arity(\varphi) = n$ and $t_1, \ldots, t_n$ are \glspl{term}, then $\varphi t_1 t_2 \ldots t_n$ is an atomic formula. \end{enumerate}} \end{definition*} \end{flashcard} \begin{example*} The language of \glspl{poset} consists of $\pOmega = \emptyset$, $\pPi = \{\le\}$, $\arity(\le) = 2$. Some \glspl{atf}: \[ x = y, \qquad x \le y ~~(\text{officially $\le xy$}) \] \end{example*} \begin{flashcard}[formulae-defn] \begin{definition*}[Formula] \glsnoundefn{form}{formula}{formulae} \cloze{We define \emph{formulae} inductively: \begin{enumerate}[(i)] \item \glspl{atf} are formulae. \glssymboldefn{pperp}{$\perp$}{$\perp$} \item $\perp$ is a formula. \glssymboldefn{pimpl}{$\Rightarrow$}{$\Rightarrow$} \item If $p, q$ are formulae, then so is $(p \Rightarrow q)$. \glssymboldefn{pforall}{$\forall$}{$\forall$} \item If $p$ is a formula and the \gls{var} $x$ has a \emph{free occurrence} in $p$, then $(\forall x) p$ is a formula. \end{enumerate} } \end{definition*} \end{flashcard} \begin{note*} A \gls{form} is a finite string of symbols from the set of \glspl{var}, $\pOmega$, $\pPi$ and $\{(, ), \pimpl, \pperp, =, \pforall\}$. \end{note*}