%! TEX root = LST.tex % vim: tw=50 % 08/02/2024 09AM \begin{warning*} Recall that when studying \glsref[linord]{linearly ordered} sets, we noted that \[ \text{$f$ is \gls{op} and injective} \iff \forall x, y \in A, x \llt y \implies f(x) \llt f(y) .\] The $\Rightarrow$ direction is true for \glspl{poset}, but the $\Leftarrow$ direction is not true in general for a \gls{poset}. \end{warning*} \subsubsection*{Applications of Zorn's Lemma} \begin{flashcard}[every-vspace-has-basis-thm] \begin{theorem} Every vector space $V$ (over some field) has a basis. \end{theorem} \begin{proof} \cloze{We seek a maximal linearly independent set $B \subset V$. Then we're done: if $V \neq \langle B \rangle$, then for any $x \in V \setminus \langle B \rangle$, $B \cup \{x\}$ is also linearly independent, which would contradict maximality of $B$. Let $X = \{A \subset v \st A \text{ is linearly independent}\}$ ordered by inclusion. Let $\{A_i \st i \in I\}$ be a \gls{chain} in $X$. Then this has upper bound $A = \bigcup_{i \in I} A_i$. We first need to check that $A$ is linearly independent. Assume $\sum_{j = 1}^n \lambda_j x_j = 0$ is a linear relation on $A$ (where $x_1, \ldots, x_n \in A$, and $\lambda_1, \ldots, \lambda_n$ are scalars). For each $1 \le j \le n$, pick $i_j \in I$ such that $x_j \in A_{i_j}$. Since the $A_i$ form a chain, there exists $1 \le m \le n$ such that $A_{i_j} \subset A_{i_m}$ for all $1 \le j \le n$. Then $\sum_{j = 1}^n \lambda_j x_j = 0$ is a linear relation on the linearly independent set $A_{i_m}$, so $\lambda_1 = \cdots = \lambda_n = 0$. Thus $A$ is linearly independent.} \end{proof} \end{flashcard} \begin{remark*} \phantom{} \begin{enumerate}[(1)] \item A very similar proof shows that if $B_0 \subset V$ is linearly independent, then $V$ has a basis $B$ such that $B \supset B_0$. \item $\RR$ is a vector space over $\QQ$, so has a basis (Hamel basis). This can be used to show the existence of non-Lebesgue-measurable sets (see \courseref[Probability \& Measure]{PM}). \item $\RR^{\NN}$ the real vector space of real sequences has no countable basis, but we now know it has a basis. \item In topology: Tychonoff's Theorem. In Functional Analysis: Hahn-Banach Theorem. In algebra: maximal ideals in rings with $1$. \end{enumerate} \end{remark*} \vspace{-1em} The next application of \nameref{ZL} completes the proof of \nameref{model_existence_lemma}: \begin{flashcard}[ZL-model-existence-lemma] \begin{theorem} Let $P$ be any set of \gls{primp}, $S \subset \propL = \propL(\propP)$ be \gls{cons}. Then there exists a \gls{cons} set $\ol{S} \subset \propL$ such that $S \subset \ol{S}$ and $\forall t \in \propL$ either $t \in \ol{S}$ or $\pnot t \in \ol{S}$. \end{theorem} \begin{proof} \cloze{We seek a maximal consistent set $\ol{S} \supset S$. Then we're done as follows: given $t \in L$, one of $S \cup \{t\}$ and $S \cup \{\pnot t\}$ is consistent, otherwise $S \cup \{t\} \synentails \false$, $\ol{S} \cup \{\pnot t\} \synentails \false$, and so by the \nameref{ded_thm}, $\ol{S} \synentails \pnot t$, $\ol{S} \synentails \pnot \pnot t$ and hence $\ol{S} \synentails \false$ by \gls{MP}, contradiction. Hence by maximality of $\ol{S}$, either $t \in \ol{S}$ or $\pnot t \in \ol{S}$. Let $X = \{T \subset \propL \st S \subset T, \text{$T$ is \gls{cons}}\}$, \glsref[partord]{partially ordered} by $\subset$. $X \neq \emptyset$ since $S \in X$. Let $C = \{T_i \st i \in I\}$ be a non-empty \gls{chain} in $X$. Let $T = \bigcup_{i \in I} T_i$. Then $S \subset T$ ($I \neq \emptyset$). If $T \synentails \false$ then as proofs are finite, there exists finite $J \subset I$ such that $\bigcup_{j \in J} T_j \synentails \false$. Since $C$ is a chain, there exists $j_0 \in J$ such that $\bigcup_{j \in J} T_j = T_{j_0}$, so $T_{j_0} \synentails \false$, contradiction. By \nameref{ZL}, $X$ has a \gls{pomaxel}.} \end{proof} \end{flashcard} \begin{flashcard}[well-ordering-principle] \begin{theorem}[Well-ordering principle] \label{WO} Every set can be well-ordered. \end{theorem} \fcscrap{ \begin{example*} $\RR$ can be \glsref[wellord]{well-ordered}. Think about this for a bit. This feels very unnatural! \end{example*} } \begin{proof} \cloze{Let $A$ be a set. Let \[ X = \{(B, R) \in \PP A \times \PP(A \times A) \st \text{$R$ is a \gls{wellord} of $B$}\} \] \glsref[partord]{partially ordered} by extension: $(B_1, R_1) \ple (B_2, R_2)$ if and only if $B_1 \subset B_2$, $R_1 = R_2 \cap (B_1 \times B_1)$ ($R_1$ is the restriction of $R_2$ to $B_1$) and $B_1$ is an \gls{is} of $B_2$. Note $X \neq \emptyset$, since $(\emptyset, \emptyset) \in X$. Let $C = \{(B_i, R_i) \st i \in I\}$ be a \gls{chain} in $X$, i.e. a nested set of \glsref[wellord]{well-ordered} sets. Then \[ \left( \bigcup_{i \in I}, \bigcup_{i \in I} R_i \right) \] is an upper bound as in \cref{sec2}. By \nameref{ZL}, $X$ has a maximal element $(B, R)$. We need $B = A$. If not, pick $x \in A \setminus B$, then \[ (B, R)^+ = (B \cup \{x\}, R \cup \{(b, x) \st b \in B\}) \in X \] and $(B, R) \plt (B, R)^+$, contradiction.} \end{proof} \end{flashcard} \begin{remark*} Often in applications of \nameref{ZL}, the maximal object whose existence it asserts cannot be described explicitly (``magical''). \end{remark*} \subsubsection*{The Axiom of Choice (AC)} In the proof of \nameref{ZL} we used two functions: \begin{align*} X &\to X \\ x &\mapsto x' \in \{y \st y \pgt x\} \\ u : \{C \subset X \st \text{$C$ is a \gls{chain}}\} &\to X \\ u(C) &\in \{x \in X \st \text{$x$ is an \gls{ub} for $C$}\} \end{align*} These are known as choice functions. Axiom of Choice says: \begin{flashcard}[ax-of-choice] \prompt{Axiom of Choice? \\} \glsnoundefn{aoc}{axiom of choice}{N/A} \cloze{For any set $\{A_i \st i \in I\}$ of non-empty sets, there exists a function $f : I \to \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$ for all $i \in I$. We call this a \emph{choice function}.} \end{flashcard} This is different in character from other rules for building sets ($\cup$, $\PP$ etc) in the sense that choice functions need not be unique. For this reason, we're often interested in proving things without \gls{aoc}. \begin{note*} When $I$ is finite, we can prove existence of choice functions by induction on $|I|$. \end{note*} \begin{flashcard}[AC-iff-ZL-iff-WO] \begin{theorem} The following are equivalent: \begin{enumerate}[(i)] \item \glsref[aoc]{Axiom of choice}. \item \nameref{ZL}. \item \nameref{WO}. \end{enumerate} \end{theorem} \begin{proof} \cloze{\phantom{} \begin{enumerate}[WO $\Rightarrow$ AC] \item[AC $\Rightarrow$ ZL] See proof of \cref{ZL}. \item[ZL $\Rightarrow$ WO] See proof of \cref{WO}. \item[WO $\Rightarrow$ AC] Let $\{A_i \st i \in I\}$ be a set of non-empty sets. Let $A = \bigcup_{i \in I} A_i$. \glsref[wellord]{Well order} $A$ and define $f : I \to A$ by setting $f(i)$ to be the least element of $A_i$. \qedhere \end{enumerate}} \end{proof} \end{flashcard} \textbf{Exercise:} Prove the implications directly.