Logic and Set Theory

June 2, 2024

Contents

Lectures

[Lecture 1](#page-2-1) [Lecture 2](#page-4-0) [Lecture 3](#page-7-0) [Lecture 4](#page-10-0) [Lecture 5](#page-14-0) [Lecture 6](#page-17-0) [Lecture 7](#page-20-0) [Lecture 8](#page-24-0) [Lecture 9](#page-29-0) [Lecture 10](#page-36-0) [Lecture 11](#page-39-0) [Lecture 12](#page-43-0) [Lecture 13](#page-47-0) [Lecture 14](#page-50-0) [Lecture 15](#page-54-0) [Lecture 16](#page-56-0) [Lecture 17](#page-60-0) [Lecture 18](#page-62-0) [Lecture 19](#page-65-0) [Lecture 20](#page-68-0) [Lecture 21](#page-70-0) [Lecture 22](#page-74-1) [Lecture 23](#page-74-2) [Lecture 24](#page-79-0)

Start of

[lecture 1](https://notes.ggim.me/LST#lecturelink.1)

1 Propositional Logic

We build a language consisting of statements / propositions; we will assign truth values to statements; we build a deduction system so that we can prove statements that are true (and only those).

These are also the features of more complicated languages.

Definition (Language of Propositional Logic)**.** Our language consists of a set P of *primitive propositions* and a set $L = L(P)$ of *propositions* defined inductively as follows:

(i) $P \subset L$

- (ii) $\perp \in L$ (\perp is called 'false' or 'bottom')
- (iii) If $p, q \in L$ then $(p \Rightarrow q) \in L$.

Often $P = \{p_1, p_2, p_3, \ldots\}.$

Example. $(p_1 \Rightarrow p_2)$, $((p_1 \Rightarrow \perp) \Rightarrow p_2)$, $((p_1 \Rightarrow p_2) \Rightarrow (p_1 \Rightarrow p_3))$. If $p \in L$ $p \in L$ then we must always have $((p \Rightarrow \perp) \Rightarrow \perp) \in L$ $((p \Rightarrow \perp) \Rightarrow \perp) \in L$.

Remark.

(1) "Defined inductively" means that $L = \bigcup_{n \in \mathbb{N}} L_n$ $L = \bigcup_{n \in \mathbb{N}} L_n$ where

$$
L_1 = P \cup \{\perp\}
$$

$$
L_{n+1} = L_n \cup \{(p \Rightarrow q) \mid p, q \in L_n\}
$$
 $n \in \mathbb{N}$

- (2) Every $p \in L$ $p \in L$ is a finite string in $P \cup \{\perp, \Rightarrow, (,) \}$ $P \cup \{\perp, \Rightarrow, (,) \}$. Can prove that L is the smallest (with respect to inclusion) subset of the set Σ of all finite strings in $P \cup \{\perp, \Rightarrow, (,) \}$ $P \cup \{\perp, \Rightarrow, (,) \}$ such that (i) - (iii) above hold. Note $L \subsetneq \Sigma$ $L \subsetneq \Sigma$. For example, $\Rightarrow p_1p_3(\in \Sigma \setminus L.$ $\Rightarrow p_1p_3(\in \Sigma \setminus L.$ $\Rightarrow p_1p_3(\in \Sigma \setminus L.$
- (3) Every $p \in L$ $p \in L$ is uniquely determined by (i) (iii) above, i.e. either $p \in P$ $p \in P$ or $p = \perp$ or there exists unique $q, r \in L$ $q, r \in L$ such that $p = (q \Rightarrow r)$.

What about \wedge , \vee etc? We introduct symbols \wedge ('and'), \vee ('or'), \top ('true' or 'top') and \neg ('not') as abbreviations as follows:

- $\top = (\perp \Rightarrow \perp)$
- $\neg p = (p \Rightarrow \perp)$
- $p \vee q = (\neg p \Rightarrow q)$
- $p \wedge q = \neg (p \Rightarrow \neg q)$

1.1 Semantic Entailment

Definition (Valutation). A *valuation* on [L](#page-2-3) is a function $v : L \to \{0, 1\}$ such that

- (i) $v(\perp) = 0$
- (ii) if $p, q \in L$ $p, q \in L$ then

$$
v(p \Rightarrow q) = \begin{cases} 0 & \text{if } v(p) = 1 \text{ and } v(q) = 0\\ 1 & \text{otherwise} \end{cases}
$$

Example. $v(p_1) = 1, v(p_2) = 0$ $v(p_1) = 1, v(p_2) = 0$. Then

$$
v(\underbrace{(1 \Rightarrow p_1)}_{1} \Rightarrow \underbrace{(p_1 \Rightarrow p_2)}_{0}) = 0.
$$

Proposition 1.

- (i) If [v, v](#page-3-5)' are [valuations](#page-3-6) on [L](#page-2-3) and $v|_P = v'|_P$ $v|_P = v'|_P$ $v|_P = v'|_P$ $v|_P = v'|_P$ then $v = v'$.
- (ii)For any $w : P \to \{0, 1\}$ $w : P \to \{0, 1\}$ $w : P \to \{0, 1\}$, there is a [valuation](#page-3-6) $v : L \to \{0, 1\}$ such that $v|_P = w$.

Proof.

(i) So $v(p) = v'(p) \,\forall p \in P$ $v(p) = v'(p) \,\forall p \in P$ $v(p) = v'(p) \,\forall p \in P$ and $v(\bot) = v'(\bot) = 0$, so $v|_{L_1} = v'|_{L_1}$ $v|_{L_1} = v'|_{L_1}$ $v|_{L_1} = v'|_{L_1}$. If $v|_{L_n} = v'|_{L_n}$ then $\forall p, q \in L_n, v(p \Rightarrow q) = v'(p \Rightarrow q)$ $\forall p, q \in L_n, v(p \Rightarrow q) = v'(p \Rightarrow q)$ $\forall p, q \in L_n, v(p \Rightarrow q) = v'(p \Rightarrow q)$ $\forall p, q \in L_n, v(p \Rightarrow q) = v'(p \Rightarrow q)$ $\forall p, q \in L_n, v(p \Rightarrow q) = v'(p \Rightarrow q)$ and thus $v|_{L_{n+1}} = v'|_{L_{n+1}}$ $v|_{L_{n+1}} = v'|_{L_{n+1}}$ $v|_{L_{n+1}} = v'|_{L_{n+1}}$. So by induction, v and [v](#page-3-5)' agree on $\bigcup_n L_n = L$ $\bigcup_n L_n = L$ $\bigcup_n L_n = L$.

(ii) We define [v](#page-3-5) on L_n L_n by induction: Let $v(p) = w(p) \,\forall p \in P$ $v(p) = w(p) \,\forall p \in P$ and $v(\perp) = 0$. This defines [v](#page-3-5) on L_1 L_1 . Assume v is defined on L_n . Given $p \in L_{n+1} \backslash L_n$ $p \in L_{n+1} \backslash L_n$ $p \in L_{n+1} \backslash L_n$, write $p = (q \Rightarrow r)$, $q, r \in L_n$ $q, r \in L_n$ $q, r \in L_n$ and define

$$
v(p) = \begin{cases} 0 & \text{if } v(q) = 1, \, v(r) = 0\\ 1 & \text{otherwise} \end{cases}
$$

This defines [v](#page-3-5) on L_{n+1} L_{n+1} L_{n+1} . Hence v is defined on $\bigcup_n L_n = L$ $\bigcup_n L_n = L$ $\bigcup_n L_n = L$. By construction, v is a [valuation](#page-3-6) on [L](#page-2-3) and $v|_P = w$ $v|_P = w$ $v|_P = w$ $v|_P = w$. \Box

Definition (Tautology). $t \in L$ is a *tautology* if $v(t) = 1$ $v(t) = 1$ for all [valuations](#page-3-6) v.

Example.

(1) $(p \Rightarrow (q \Rightarrow p))$, $p, q \in L$ $p, q \in L$ (a true statement is implied by any statement). We check:

[lecture 2](https://notes.ggim.me/LST#lecturelink.2) (2) $(\neg \neg p \Rightarrow p)$ for any $p \in L$ $p \in L$. This can also be written as $(((p \Rightarrow \perp) \Rightarrow \perp) \Rightarrow p)$, and this can also be rewritten as $\neg p \lor p$. This is called 'law of excluded middle'.

$$
\begin{array}{c|c|c|c|c} v(p) & v(p \Rightarrow \perp) & v((p \Rightarrow \perp) \Rightarrow \perp) & v(((p \Rightarrow \perp) \Rightarrow \perp) \Rightarrow p) \\ \hline 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{array}
$$

(3) $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r)) (p, q, r \in L)$ $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r)) (p, q, r \in L)$ $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r)) (p, q, r \in L)$. If not a [tautology,](#page-4-1) then thereexists a [valuation](#page-3-6) [v](#page-3-5) such that $v(p \Rightarrow (q \Rightarrow r)) = 1$, $v((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ r)) = 0. So $v(p \Rightarrow q) = 1$ $v(p \Rightarrow q) = 1$, $v(p \Rightarrow r) = 0$. Hence $v(p) = 1$, $v(r) = 0$ and $v(q) = 1$. Then $v(p \Rightarrow (q \Rightarrow r)) = 0 \times x$ $v(p \Rightarrow (q \Rightarrow r)) = 0 \times x$.

Definition (Semantic entailment). Let $S \subset L$, $t \in L$. Say S *entails* t (or S *semantically entails t*), written $S \models t$, if for every [valuation](#page-3-6) [v](#page-3-5) on [L](#page-2-3), $v(s) = 1 \,\forall s \in S$ implies $v(t) = 1$ $v(t) = 1$.

Example.

- (1) $\{p, p \Rightarrow q\} \models q$.
- (2) $\{p \Rightarrow q, q \Rightarrow r\} \models (p \Rightarrow r)$. If $v(p \Rightarrow r) = 0$ $v(p \Rightarrow r) = 0$ then $v(p) = 1$, $v(r) = 0$. Then either $v(q) = 0$ $v(q) = 0$ and $v(p \Rightarrow q) = 0$ or $v(q) = 1$ and $v(q \Rightarrow r) = 0$.

Note.t is a [tautology](#page-4-1) if and only if $\emptyset \models t$. We write this as $\models t$.

Definition(Model). Given $t \in L$ $t \in L$, say a [valuation](#page-3-6) *is a model for* t (or t *is true in* [v](#page-3-5))if $v(t) = 1$. Given $S \subset L$, say a [valuation](#page-3-6) v *is a model of* S if $v(s) = 1$ for all $s \in S$.

Remark. So $S \models t$ says that t is true in every model of S.

We will have one rule of deduction called *modus ponens* (MP): from p and $p \Rightarrow q$ we can deduce q.

Definition (Axiom). The axioms we will use for proofs in proprositional logic are the following:

(11) $(p \Rightarrow (q \Rightarrow p))$

$$
(22) \; (\neg \neg p \Rightarrow p)
$$

(33) $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$

Definition (Proof). Given $S \subset L$ $S \subset L$, $t \in L$, a *proof of t from* S is a finite sequence t_1, t_2, \ldots, t_n of [propositions](#page-2-2) such that $t_n = t$ and for every i either t_i is an axiom or t_i is a member of S (t_i is a premise or hypothesis) or t_i follows by [MP](#page-5-1) from earlier lines: $\exists j, k < i$ such that $t_k = (t_j \Rightarrow t_i)$.

Say S *proves* t or S *syntactically entails* t if there's a proof of t from S. We denote this by $S \vdash t$. Say t is a theorem if $\emptyset \vdash t$, which we denote $\vdash t$.

Example.

Proposition 2 (Deduction Theorem). Given $S \subset L$ $S \subset L$, $p, q \in L$, we have

 $S \vdash (p \Rightarrow q)$ iff $S \cup \{p\} \vdash q$.

Note. This shows '⇒' really does behave like implication in formal proofs.

Note. To show $\{p \Rightarrow q, q \Rightarrow r\} \vdash (p \Rightarrow r)$, by [Proposition 2,](#page-6-0) enough to show ${p \Rightarrow q, q \Rightarrow r, p} \vdash r$. This is easy: write down all premises and use [\(MP\)](#page-5-1) twice.

Proof. If $S \vdash (p \Rightarrow q)$, then write down this [proof](#page-5-4) and add two lines:

toget a [proof](#page-5-4) of q from $S \cup \{p\}.$

Nowassume $S \cup \{p\} \vdash q$. Let $t_1, t_2, \ldots, t_n = q$ be a [proof](#page-5-4) of q from $S \cup \{p\}$. We show by induction that $S \vdash (p \Rightarrow t_i)$. Then done. If t_i is an axiom or $t_i \in S$, then write

toget a [proof](#page-5-4) of $p \Rightarrow t_i$ from S. If $t_i = p$ then $S \vdash (p \Rightarrow p)$ since $\vdash (p \Rightarrow p)$.

Finally, assume there exists $j, k < i$ such that $t_k = (t_j \Rightarrow t_i)$. By induction we can write down [proofs](#page-5-4) of $(p \Rightarrow t_j)$, $(p \Rightarrow (t_j \Rightarrow t_i))$ from S. Now just add

$$
(p \Rightarrow (t_j \Rightarrow t_i)) \Rightarrow ((p \Rightarrow t_j) \Rightarrow (p \Rightarrow t_i))
$$
(A2)
\n
$$
(p \Rightarrow t_j) \Rightarrow (p \Rightarrow t_i)
$$
(MP)
\n
$$
p \Rightarrow t_i
$$
(MP)

 $\mathbf{Aim:} \models \text{and} \vdash \text{are the same.}$

This has two parts: *soundness* (if $S \vdash t$, then $S \models t$) and *adequacy* (if $S \models t$, then $S \vdash t$)

Start of

Proposition 3 (Soundness theorem). Given $S \subset L$ $S \subset L$, $t \in L$, if $S \vdash t$, then $S \models t$.

*Proof.*Let $t_1, t_2, \ldots, t_n = t$ be a [proof](#page-5-4) of t from S. Let [v](#page-3-5) be a [model](#page-5-5) of S. We need: $v(t) = 1$ $v(t) = 1$. We prove by induction that $v(t_i) = 1$ for all i.

Case 1: t_i is an [axiom.](#page-5-6) Then $v(t_i) = 1$ $v(t_i) = 1$ since [axioms](#page-5-6) are [tautologies.](#page-4-1)

Case2: t_i is a premise. Then $v(t_i) = 1$ $v(t_i) = 1$ since v is a [model](#page-5-5) of S.

Case 3: $\exists j, k < i$ such that $t_k = (t_j \Rightarrow t_i)$. Then, by the induction hypothesis, $v(t_j) =$ $v(t_j) =$ $v(t_i \Rightarrow t_i) = 1$ $v(t_i \Rightarrow t_i) = 1$ and hence $v(t_i) = 1$.

 \Box

 \Box

Definition (Consistent). Given $S \subset L$ $S \subset L$, say S is *inconsistent* if $S \vdash \bot$ and S is *consistent* if $S \not\vdash \perp$.

Special case of adequacy: if $S \models \perp$ then $S \models \perp$, i.e. if S has no [model,](#page-5-5) then S is [inconsistent,](#page-7-1)or equivalently, if S is [consistent,](#page-7-1) then S has a [model.](#page-5-5)

Theorem 4 (Model Existence [L](#page-2-3)emma). Let $S \subset L$. If S is [consistent,](#page-7-1) then S has a [model.](#page-5-5)

Idea: If $S \vdash t$, then $S \models t$ by [Soundness theorem.](#page-7-2) So try

$$
v(t) = \begin{cases} 1 & \text{if } S \vdash t \\ 0 & \text{otherwise} \end{cases}
$$

This doesn't work because it's possible to have $t \in L$ $t \in L$ such that $S \not\vdash t$ and $S \not\vdash \neg t$. For example, $S = \emptyset$, $t = (p_1 \Rightarrow \perp)$.

We try to enlarge S to \overline{S} such that \overline{S} is [consistent](#page-7-1) and $\forall t \in L$ $\forall t \in L$, t or $\neg t$ is in \overline{S} .

[P](#page-2-4)roof. We assume P is countable (we'll do the general case in [Section 3\)](#page-28-0). Then L_1 L_1 is countable and hence each L_n L_n is countable by induction. Thus L is countable. Enumerate [L](#page-2-3): t_1, t_2, t_3, \ldots

Note: if $S \subset L$ $S \subset L$ is [consistent](#page-7-1) and $t \in L$, then one of $S \cup \{t\}$ or $S \cup \{\neg t\}$ is [consistent.](#page-7-1) If not, then $S \cup \{t\} \vdash \perp$ and $S \cup \{\neg t\} \vdash \perp$. By the [Deduction Theorem,](#page-6-0) $S \vdash \neg t$, and so $S \vdash \perp \infty$.

Sonow start with a [consistent](#page-7-1) $S \subset L$ $S \subset L$. Set $S_0 = S$. Using the comment above, we let S₁ be either S₁ be either $S_0 \cup \{t_1\}$ or $S_1 \cup \{\neg t_2\}$, where we pick one such that S₁ is [consistent.](#page-7-1) Similarly, let S_2 be either $S_1 \cup \{t_2\}$ or $S_1 \cup \{\neg t_2\}$, where we pick one such that S_2 is [consistent.](#page-7-1)

Continue inductively and set $\overline{S} = \bigcup_{n=0}^{\infty} S_n$. Then $\forall t \in L$ $\forall t \in L$, either $t \in \overline{S}$ or $\neg t \in \overline{S}$. Also, \overline{S} is [consistent](#page-7-1) since [proofs](#page-5-4) are finite, so if $\overline{S} \vdash \perp$, then $\exists n$ such that $S_n \vdash \perp \check{\gg}$.

It follows that \overline{S} is *deductively closed*: if $\overline{S} \vdash t$, then $t \in \overline{S}$. If not, then $\neg t \in \overline{S}$, so $\overline{S} \vdash \neg t$ and also $\overline{S} \vdash t$ and hence $\overline{S} \vdash \bot$ [\(MP\)](#page-5-1) \times .

We now define $v: L \to \{0, 1\}$ by

$$
v(t) = \begin{cases} 1 & t \in \overline{S} \\ 0 & t \notin \overline{S} \end{cases}
$$

Claim: v is a [valuation.](#page-3-6) Then v is a [model](#page-5-5) of S , and we are done.

Firstly: $v(\perp) = 0$ $v(\perp) = 0$ since $v \notin \overline{S}$ is [consistent.](#page-7-1) Now we check $v(p \Rightarrow q)$ for $p, q \in L$ $p, q \in L$.

Case 1: $v(p) = 1$ $v(p) = 1$, $v(q) = 0$. We need $(p \Rightarrow q) \notin \overline{S}$. By assumption, $p \in \overline{S}$, $q \notin \overline{S}$, so $\neg q \in \overline{S}$. If $(p \Rightarrow q) \in \overline{S}$, then by [\(MP\)](#page-5-1), $\overline{S} \vdash q$ and hence $q \in \overline{S}$ (\overline{S} deductively closed) \mathcal{L} (as $\neg q \in \overline{S}$, so $\overline{S} \vdash \perp$).

Case 2: $v(q) = 1$ $v(q) = 1$. We need $(p \Rightarrow q) \in \overline{S}$. We have $q \in \overline{S}$. Write down

$$
q
$$
 (premise)
\n
$$
q \Rightarrow (p \Rightarrow q)
$$
 (A1)
\n
$$
(p \Rightarrow q)
$$
 (MP)

so
$$
\overline{S}
$$
 + $(p \Rightarrow q)$ and hence $(p \Rightarrow q) \in \overline{S}$.

Case 3: $v(p) = 0$ $v(p) = 0$. We need $(p \Rightarrow q) \in \overline{S}$, or equivalently $\overline{S} \vdash (p \Rightarrow q)$ (since \overline{S} is deductively closed). Enough to show that $\overline{S}\cup\{p\} \vdash q$ (by [Deduction Theorem\)](#page-6-0). Since $v(p) = 0$ $v(p) = 0$, $p \notin \overline{S}$, and hence $\neg p \in \overline{S}$. Now obtain a proof of q from $\overline{S} \cup \{p\}$ as follows:

 \Box

 \Box

Corollary 5 (Adequacy). [L](#page-2-3)et $S \subset L$, $t \in L$. If $S \models t$ then $S \vdash t$.

Proof. $S \cup \{\neg t\} \models \bot$, so by [Theorem 4,](#page-8-0) $S \cup \{\neg t\} \vdash \bot$. Then by the [Deduction Theorem,](#page-6-0) $S \vdash \neg\neg t$ $S \vdash \neg\neg t$ $S \vdash \neg\neg t$. Take a [proof](#page-5-4) of this, and add the lines:

$$
\neg\neg t \implies t \tag{A3}
$$

$$
t \tag{MP}
$$

So $S \vdash t$.

Theorem 6 (Completeness Theorem). [L](#page-2-3)et $S \subset L$, $t \in L$. Then $S \models t$ if and only if $S \vdash t$.

Proof.

 \Rightarrow [Soundness theorem](#page-7-2)

 \Leftarrow [Adequacy](#page-9-0)

Corollary 7 (Compactness Theorem). [L](#page-2-3)et $S \subset L$, $t \in L$. If $S \models t$ then \exists finite $S' \subset S$ such that $S' \models t$.

Proof. Trivial for \vdash as [proofs](#page-5-4) are finite.

Special case:

Corollary8. [L](#page-2-3)et $S \subset L$. If every finite subset of S has a [model,](#page-5-5) then S has a [model.](#page-5-5)

Proof. If not, then $S \models \perp$, so by [Corollary 7](#page-10-1) there exists finite $S' \subset S$ with $S' \models \perp$, contradiction. \Box

Remark. [Corollary 8](#page-10-2) implies [Corollary 7.](#page-10-1) If $S \models t$ then $S \cup \{\neg t\} \models t$, so by [Corollary 8](#page-10-2) there exists finite $S' \subset S$ such that $S' \cup \{\neg t\} \models \bot$. So $S' \models t$.

Note. The use of the word 'compactness' is more than a fancified analogy (see [Example Sheet 1\)](http://www.dpmms.cam.ac.uk/study/II/Logic/).

Corollary 9 (Decidability Theorem). [L](#page-2-3)et $S \subset L$, S finite and $t \in L$. Then there's an algorithm that can decide in finite time whether $S \vdash t$ or not.

Proof. Easy to decide if $S \models t$. Just write out a truth table.

 \Box

Start of

[lecture 4](https://notes.ggim.me/LST#lecturelink.4)

 \Box

2 Well-ordering and ordinals

Definition (Linear order)**.** A *linear order* of *total order* on a set X is a relation < on X that is:

- (i) *irreflexive*: $\forall x \in X, \neg(x < x)$.
- (ii) *transitive*: $\forall x, y, z \in X, (x \leq y \land y \leq z) \implies (x \leq z).$
- (iii) *trichotomy*: $\forall x, y \in X, x < y$ or $x = y$ or $y < x$.

Remark. In (iii) exactly one holds: for example, if $x < y$ and $y < x$, then $x <$ by (ii) which contradicts (i).

Notation.We say X is [linearly ordered](#page-11-1) by \lt , or simply say X is a linearly ordered set.

Example. N, Z, Q, R with their usual order $(N = \{1, 2, 3, \ldots\})$.

Note. If X is a set of size ≥ 2, then on $\mathbb{P}X = \{Y | Y \subset X\}$ (power set of X), defining $a < b$ $a < b$ to mean $a \subset b$, $a \neq b$ is not [trichotomous.](#page-11-1)

Notation. If X is [linearly ordered](#page-11-1) by \lt , then we write $x > y$ $x > y$ for $y < k$ $y < k$ $y < k$, $x \le y$ for $x < y$ or $x = y$, and $x \ge y$ for $x > y$ or $x = y$.

Note. Note that \leq is:

- 1. *reflexive*: $\forall x \in X, x \leq x$.
- 2. *antisymmetric*: $\forall x, y \in X, (x \leq y \land y \leq x) \implies (x = y)$.
- 3. *transitive*: $\forall x, y, z \in X, (x \leq y \land y \leq z) \implies (x \leq z).$
- 4. *trichotomous*: $\forall x, y \in X, x \leq y$ or $y \leq x$.

Note. If X is [linearly ordered](#page-11-1) by \lt , then any $Y \subset X$ is linearly ordered by \lt (more precisely, by the restriction of \lt to Y).

Definition(Well-ordering). A *well-ordering* on a set X is a [linear order](#page-11-1) \lt on X such that every non-empty subset X has a least element: $\forall S \subset X, S \neq \emptyset$ implies $\exists x \in S$ such that $\forall y \in S, x \leq y$.

Note. This least element is always unique by [antisymmetric.](#page-11-4)

Notation.Say X is *well-ordered* by \lt , or simply say X is a [well-ordered](#page-12-0) set.

Example. N with the usual [linear order](#page-11-1)is a [well-ordering.](#page-12-0)

 $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are not (they have no least element). $\{x \in \mathbb{R} \mid x \geq 0\}$ is not [well-ordered,](#page-12-0) because for example, $\{x \in \mathbb{R} \mid x > 0\}$ has no least element.

Note.Every subset of a [well-ordered](#page-12-0) set is [well-ordered.](#page-12-0) We'll see that $\mathbb Q$ has a rich collection of well-ordered subsets.

Definition (Order isomorphic)**.** Say [linearly ordered](#page-11-1) sets X, Y are *order-isomorphic* if there exists a bijection $f: X \to Y$ which is *order-preserving*: $\forall x \leq y$ in X, $f(x) < f(y)$ $f(x) < f(y)$ $f(x) < f(y)$. Such an f is called an *order-isomorphism*. Then f^{-1} is also an order-isomorphism.

Note. If [linearly ordered](#page-11-1) sets X, Y are [order-isomorphic](#page-12-1) and X is [well-ordered,](#page-12-0) then so is Y .

Example. N and Q are not [order-isomorphic.](#page-12-1)

 $\mathbb Q$ and $\mathbb Q \setminus \{0\}$ are [order-isomorphic](#page-12-1) (see Numbers & Sets Example Sheet).

 $A = \{\frac{1}{2}, \frac{2}{3}\}$ $\frac{2}{3}, \frac{3}{4}$ $\left\{\frac{n}{n+1} \mid n \in \mathbb{N}\right\}$ is [order-isomorphic](#page-12-1) to \mathbb{N} $(n \mapsto \frac{n}{n+1})$.

 $B = A \cup \{1\}$ is [well-ordered,](#page-12-0) but not [order-isomorphic](#page-12-1) to N (it has a greatest element).

 $C = A \cup \{2\}$ is [order-isomorphic](#page-12-1) to B.

 $D = A \cup (A + 1) = A \cup \left\{\frac{3}{2}, \frac{5}{3}\right\}$ $\frac{5}{3}, \frac{7}{4}$ $\left\{\frac{7}{4}, \ldots\right\}$ is [well-ordered,](#page-12-0) but not [order-isomorphic](#page-12-1) to A or B.

Definition (Initial segment)**.** A subset I ofa [linearly ordered](#page-11-1) set X is an *initial seqment* (i.s.) of X is $x \in I, y < x \implies y \in I$ for any $x, y \in X$.

Example. $\{1, 2, 3, 4\}$ is an [initial segment](#page-13-0) of \mathbb{N} . $\{1, 2, 3, 5\}$ is not.

[0, 1] is an [initial segment](#page-13-0) of $\{x \in \mathbb{R} \mid x \geq 0\}.$

Notation. In general, for $x \in X$, $I_x = \{y \in X | y < x\}$ is an *is* of X by [transitive.](#page-11-5) I_x is a proper [initial segment](#page-13-0) of X (meaning $I_x \neq X$), because it does not contain x.

Note. In general, not every proper [initial segment](#page-13-0) is of this form. For example, $(-\infty, 1]$ is a proper [initial segment](#page-13-0) of R, but $(-\infty, 1] \neq I_x$ $(-\infty, 1] \neq I_x$ $(-\infty, 1] \neq I_x$ for any $x \in \mathbb{R}$.

Remark. If X is [well-ordered](#page-12-0) and I is a proper [initial segment](#page-13-0) of X, then $I = I_x$ $I = I_x$ where x is the [least element](#page-12-2) of $X \setminus I$.

[I](#page-13-1)ndeed, if $y \in I_x$ then $y < x$, so $y \in I$ by choice of x. If $y \in I$ and $y \ge x$, then $x \in I$ as I is an [initial segment,](#page-13-0) contradiction. So $y < x$, i.e. $y \in I_x$ $y \in I_x$ $y \in I_x$.

Lemma1. Let X, Y be a [well-ordered](#page-12-0) set, I an [initial segment](#page-13-0) of Y and $f: X \to Y$ an [order-isomorphism](#page-12-3) between X and I. Then for each $x \in X$, $f(x)$ is the [least](#page-12-2) [element](#page-12-2) of $Y \setminus \{f(y) \mid y < x\}.$

Proof. The set $A = Y \setminus \{f(y) \mid y < x\}$ is $\neq \emptyset$ since $f(x) \in A$. Let a be the [least element](#page-12-2) of A. Then $a \leq f(x)$ and $f(x) \in I$, and so $a \in I$. Thus $a = f(x)$ for some $z \in X$. Note that $z > x$ implies $a = f(z) > f(x)$, contradiction. So $z \leq x$.

If $z < x$, then $a = f(z) \in \{f(y) \mid y < x\}$, \mathbb{X} as $a \in A$. So $z = x$ and $a = f(z) = f(x)$. \Box

Proposition2 (Proof by induction). Let X be a [well-ordered](#page-12-0) set and $S \subset X$ satisfying the following for every $x \in X$: $\forall y \leq x, y \in S$ implies $x \in S$. Then $S = X$.

Note. Assume S is given by a property p: $S = \{x \in X \mid p(x)\}\$. The above can be written as

$$
(\forall x \in X)((\forall y < x, p(y)) \implies p(x)) \implies (\forall x \in X, p(x))
$$

(base case is included since the left hand side will be vacuously true for the [least](#page-12-2) [element](#page-12-2)).

*Proof.*If $S \neq X$, then $X \setminus S$ has a [least element](#page-12-2) x, say. If $y < x$ $y < x$, then $y \in S$ by choice of x. By the assumption on $S, x \in S$, contradiction. \Box

Start of

Proposition 3. Let X, Y be [well-ordered](#page-12-0) sets that are [order-isomorphic.](#page-12-1) Then there exists unique [order-isomorphism](#page-12-3) $X \to Y$.

> **Remark.** Not true in general for [linearly ordered](#page-11-1) sets. For example for $\mathbb{Z} \to \mathbb{Z}$ we can take $n \mapsto n$ or $n \mapsto n + 17$, and for $[0, \infty) \to [0, \infty)$ can take $x \mapsto x$ or $x \mapsto x^2$.

Proof. Let $f, g: X \to Y$ be [order-isomorphisms.](#page-12-3) We prove that $\forall x \in X$, $f(x) = g(x)$ by [induction.](#page-14-1) Let $x \in X$. Assume $f(y) = g(y)$ for all $y < x$ $y < x$ [\(induction](#page-14-1) hypothesis). By [Lemma 1,](#page-3-7)

$$
f(x) = \min(Y \setminus \{f(y) \mid y < x\})
$$
\n
$$
g(x) = \min(Y \setminus \{g(y) \mid y < x\})
$$

By [induction](#page-14-1) hypothesis,

$$
\{f(y) \mid y < x\} = \{g(y) \mid y < x\}.
$$

 \Box

So $f(x) = g(x)$.

Remark. [Induction](#page-14-1) proves things. We need a tool to construct things. This will be *recursion*.

Note. A function from a set X to a set Y is a subset f of $X \times Y$ such that:

(i) $\forall x \in X, \exists y \in Y \text{ such that } (x, y) \in f.$

(ii) $\forall x \in X, \forall y, z \in Y \ ((x, y) \in f \land (x, z) \in f) \implies (y = z).$

Of course we write ' $y = f(x)$ ' instead of ' $(x, y) \in f$ '. Note that $f \in \mathbb{P}(X \times Y)$. For $Z \subset X$, the restriction of f to Z is $f|Z = \{(x, y) \in f \mid x \in Z\}$. $f|Z$ is a function $Z \to Y$, so $f|_Z \subset Z \times Y \subset X \times Y$, so $f|_Z \in \mathbb{P}(X \times Y)$.

Theorem 4 (Definition by recursion)**.** Let X bea [well-ordered](#page-12-0) set and Y be an arbitrary set. Then for any function $G : \mathbb{P}(X \times Y) \to Y$ there is a unique function $f: X \to Y$ such that $f(x) = G(f|_{I_x})$ $f(x) = G(f|_{I_x})$ $f(x) = G(f|_{I_x})$ for every $x \in X$.

Proof. **Uniqueness:** Assume f, g both satisfy the conclusion. Given $x \in X$, if $f(y) =$ $g(y)$ for all $y < x$ $y < x$, then $f(x) = G(f|_{I_x}) = G(g|_{I_x}) = g(x)$ $f(x) = G(f|_{I_x}) = G(g|_{I_x}) = g(x)$ $f(x) = G(f|_{I_x}) = G(g|_{I_x}) = g(x)$. So by induction, $f = g$.

Existence: Say h is an *attempt* if h is a function $I \rightarrow Y$ for some [initial segment](#page-13-0) I of X such that $\forall x \in I$ $\forall x \in I$, $h(x) = G(h|_{I_x})$ (note $I_x \subset I$). Let h, h' be attempts. We show that $\forall x \in X$, if $x \in \text{dom}(h) \cap \text{dom}(h')$, then $h(x) = h'(x)$. Here, $\text{dom}(h)$ is the domain of h, i.e. I as above. Fix $x \in \text{dom}(h) \cap \text{dom}(h')$ and assume $h(y) = h'(y)$ for every $y < x$ $y < x$ (note $y < x$ implies $y \in \text{dom}(h) \cap \text{dom}(h')$). Then $h|_{I_x} = h'|_{I_x}$ $h|_{I_x} = h'|_{I_x}$ $h|_{I_x} = h'|_{I_x}$, so $h(x) = G(h|_{I_x}) = G(h'|_{I_x}) = h'(x)$ $h(x) = G(h|_{I_x}) = G(h'|_{I_x}) = h'(x)$ $h(x) = G(h|_{I_x}) = G(h'|_{I_x}) = h'(x)$. Then done by induction.

What we have left to show for existence is that $\forall x \in X$ there exists an attempt h such that $x \in \text{dom } h$. We prove this by induction. Fix $x \in X$ and assume that for $y < x$ $y < x$ there is an attempt defined at y, and let h_y be the unique attempt with domain $\{z \in X \mid z \leq \}$

 y } = $I_y \cup \{y\}$ $I_y \cup \{y\}$. Then $h = \bigcup_{y < x} h_y$ is a well-defined function on I_x and it is an attempt since fo $y < x$ $y < x$, $h(y) = h_y(y) = G(h_y|_{I_x}) = G(h|_{I_y})$ $h(y) = h_y(y) = G(h_y|_{I_x}) = G(h|_{I_y})$ $h(y) = h_y(y) = G(h_y|_{I_x}) = G(h|_{I_y})$. Then $h \cup \{(x, G(h))\}$ is an attempt with domain $I_x \cup \{x\}$ $I_x \cup \{x\}$. Finally, define $f : X \to Y$, $f(x) = h(x)$ where h is any attempt defined at x. This is well-defined by above and $f(x) = h(x) = G(h|_{I_x}) = G(f|_{I_x})$ $f(x) = h(x) = G(h|_{I_x}) = G(f|_{I_x})$ $f(x) = h(x) = G(h|_{I_x}) = G(f|_{I_x})$. \Box

Proposition5 (Subset collapse). Let Y be a [well-ordered](#page-12-0) set and $X \subset Y$. Then X is [order-isomorphic](#page-12-1) to a unique [initial segment](#page-13-0) of Y .

Proof. Without loss of generality, $X \neq \emptyset$.

Uniqueness: Assume $f: X \to I$ is an [order-isomorphism](#page-12-3) where I is an [initial segment](#page-13-0) of Y. By [Lemma 1,](#page-3-7) $f(x) = \min(Y \setminus \{f(y) | y < x, y \in X\})$ $f(x) = \min(Y \setminus \{f(y) | y < x, y \in X\})$ $f(x) = \min(Y \setminus \{f(y) | y < x, y \in X\})$. So by induction, f and hence I are uniquely determined.

Existence: Fix $y_0 \in Y$. By [Theorem 4,](#page-8-0) there's a function $f : X \to Y$ such that

$$
f(x) = \begin{cases} \min(Y \setminus \{f(y) \mid y \in X, y < x\}) & \text{if it exists} \\ y_0 & \text{otherwise} \end{cases}
$$

We first prove that the 'otherwise' clause never occurs. We prove that $\forall x \in X$, $f(x) \leq x$. If $\forall y \in X, y < x$ $\forall y \in X, y < x$ $\forall y \in X, y < x$ implies $f(y) \leq y$, then $x \in Y \setminus \{f(y) \mid y \in X, y < x\}$, so $f(x) \leq x$. Done by induction. This also shows that f is injective.

f order preserving: Given $y < x$ $y < x$ in $X, f(x) \in Y \setminus \{f(z) \mid z \in X, z < x\} \subset Y \setminus \{f(z) \mid z \in X, z \in X\}$ $X, f(x) \in Y \setminus \{f(z) \mid z \in X, z < x\} \subset Y \setminus \{f(z) \mid z \in X, z \in X\}$ $X, f(x) \in Y \setminus \{f(z) \mid z \in X, z < x\} \subset Y \setminus \{f(z) \mid z \in X, z \in X\}$ $z \in X, z \leq y$. So $f(y) \leq f(x)$, and hence $f(y) \leq f(x)$ by injectivity.

Im f is an [initial segment](#page-13-0) of Y: Assume $a \in Y \setminus \text{Im } f$. We show $f(x) < a$ $f(x) < a$ $f(x) < a$ for all $x \in X$. If $f(y) < a$ for all $y \in X$, $y < x$ $y < x$, then $a \in Y \setminus \{f(y) \mid y \in X, y < x\}$, so $f(x) \le a$ and hence $f(x) < a$ $f(x) < a$ $f(x) < a$. Done by induction. \Box

Remark. A [well-ordered](#page-12-0) set X is not [order-isomorphic](#page-12-1) to a proper [initial segment](#page-13-0) of X (by uniqueness). But X is of course [order-isomorphic](#page-12-1) to X .

Notation. Let X, Y be [well-ordered](#page-12-0) sets. Write $X \leq Y$ if X is [order-isomorphic](#page-12-1) to an [initial segment](#page-13-0) of Y.

Example. If $A = \{\frac{1}{2}, \frac{2}{3}\}$ $\frac{2}{3}, \frac{3}{4}$ $\frac{3}{4}, \ldots \} \cup \{1\}.$ Then $\mathbb{N} \leq A$. **Theorem 6.** Let X, Y be [well-ordered](#page-12-0) sets. Then $X \leq Y$ or $Y \leq X$.

Proof. Assume $Y \nleq X$. Then $Y \neq \emptyset$ and we can fix $y_0 \in Y$. We recursively define $f: X \to Y$ by

$$
f(x) = \begin{cases} \min(Y \setminus \{f(y) \mid y < x\}) & \text{if it exists} \\ y_0 & \text{otherwise} \end{cases}
$$

If the 'otherwise' clause occurs, let x be the least element of X when this happens. Then $f(I_x) = Y$ and as in [Proposition 5,](#page-9-0) f is an [order-isomorphism](#page-12-3) $I_x \to Y$, which contradicts $Y \nleq X$. So the 'otherwise' clause never occurs. So as in proof of [Proposition 5,](#page-9-0) f is an [order-isomorphism](#page-12-3) to an [initial segment](#page-13-0) of Y, i.e. $X \leq Y$. \Box

Proposition 7. Let X, Y be [well-ordered](#page-12-0) sets. If $X \leq Y$ and $Y \leq X$ then X and Y are [order-isomorphic.](#page-12-1)

Proof. Let $f: X \to Y$, $g: Y \to X$ be [order-isomorphisms](#page-12-3) onto [initial segment](#page-13-0) of Y, X respectively. Then $q \circ f$ is an [order-isomorphism](#page-12-3) between X and an order-isomorphism of X, so $q \circ f = id_X$ by uniqueness in [Proposition 5.](#page-9-0) Similarly $f \circ q = id_Y$. \Box

Start of

[lecture 6](https://notes.ggim.me/LST#lecturelink.6)**Remark.** [Theorem 6](#page-9-1) and [Proposition 7](#page-10-1) together show that \leq is a [linear order](#page-11-1) [\(reflexive,](#page-11-6) [antisymmetric,](#page-11-4) [transitive](#page-11-5) and [trichotomous\)](#page-11-7), provided we identify [well](#page-12-0)[ordered](#page-12-0) sets that are [order-isomorphic](#page-12-1) to each other.

> **Notation.** We introduce ' $X \leq Y$ ' to mean $X \leq Y$ and X is not [order-isomorphic](#page-12-1) to Y. So $X < Y$ $X < Y$ if and only if X [order-isomorphic](#page-12-1) to a proper [initial segment](#page-13-0) of Y.

Question: Do the [well-ordered](#page-12-0)sets form a set? If so, is it a well-ordered set?

First we construct new [well-ordered](#page-12-0) sets from old ones.

'there's always another one':

Definition(Successor ordinal)**.** Let X be a [well-ordered](#page-12-0) set, fix $x_0 \notin X$, and set $X^+ = X \cup \{x_0\}$, which we [well-order](#page-12-0) by extending \lt on X to X^+ by letting $x \lt x_0$ for all $x \in X$. This is unique up to [order-isomorphism](#page-12-3) and $X < X^+$ $X < X^+$ $X < X^+$.

Upperbounds: Given a set $\{X_i \mid i \in I\}$ of [well-ordered](#page-12-0) sets, we seek a well-ordered set X such that $X_i \leq X$ for all $i \in I$.

Definition (Extends). Given [well-ordered](#page-12-0) sets $(X, \langle x \rangle)$ and $(Y, \langle y \rangle)$, say Y *extends* X if $X \subset Y$, \lt_{X} is the restriction to X of \lt_{Y} and X is an [initial segment](#page-13-0) of Y.

Definition (Nested). We say $\{X_i \mid i \in I\}$ is *nested* if $\forall i, j \in I$ either X_j [extends](#page-18-0) X_i or X_i [extends](#page-18-0) X_i .

Proposition8. Let $\{X_i \mid i \in I\}$ be a [nested](#page-18-1) set of [well-ordered](#page-12-0) sets. Then there existsa [well-ordered](#page-12-0) set X such that $X_i \leq X$ for all $i \in I$.

Proof. Let $X = \bigcup_{i \in I} X_i$ and define \lt on X as follows: $x \lt y$ if and only if $\exists i \in I$ such that $x, y \in X_i$ and $x \leq_i y$ where \leq_i is the [well-ordering](#page-12-0) of X_i . Since the X_i are [nested,](#page-18-1) this is well-defined, is a linear order and each X_i is an [initial segment](#page-13-0) of X.

Given $S \subset X$, $S \neq \emptyset$, since $S = \bigcup_{i \in I} (S \cap X_i)$, there exists $i \in I$ such that $S \cap X_i \neq \emptyset$. Letx be a [least element](#page-12-2) of $S \cap X_i$ (since X_i is [well-ordered\)](#page-12-0). Then x is a least element of S since X_i is an [initial segment](#page-13-0) of X. \Box

Remark. [Proposition 8](#page-10-2) holds even if the X_i are not [nested](#page-18-1) (see [Section 5\)](#page-59-0).

Ordinals

Definition (Ordinal)**.** An *ordinal* isa [well-ordered](#page-12-0) set but we consider two ordinals the same if they're [order-isomorphic.](#page-12-1)

Remark. A formal definition will be given in [Section 5.](#page-59-0) You could think of the term 'ordinal' as a shorthand (for now).

Definition (Order type)**.** The *order type* ofa [well-ordered](#page-12-0) set X is the unique [ordinal](#page-18-2) α [order-isomorphic](#page-12-1) to X. Write ' α is the order type (O.T.) of X'.

Example.For $k \in \mathbb{N} \cup \{0\}$, we let k be the [order type](#page-18-3) of a [well-ordered](#page-12-0) set of size k (this is unique). Let ω be the [order type](#page-18-3) of N (also the order type of N ∪ {0}). The set $A = \{\frac{1}{2}, \frac{2}{3}\}$ $\frac{2}{3}, \frac{3}{4}$ $\frac{3}{4}, \ldots$ } in $\mathbb Q$ also has [order type](#page-18-3) ω .

Notation.We write ω for the [order type](#page-18-3) of any set which is [order-isomorphic](#page-12-1) to \mathbb{N} .

Notation.For [ordinals](#page-18-2) α, β we write $\alpha \leq \beta$ is $X \leq Y$ where X is a [well-ordered](#page-12-0) set of [order type](#page-18-3) α , Y is a [well-ordered](#page-12-0) set of order type β . This is well-defined. We also write $\alpha < \beta$ is $X < Y$ $X < Y$. We let α^+ α^+ be the [order type](#page-18-3) of X^+ .

Remark. \leq is a [linear order;](#page-11-1) if $\alpha \leq \beta$ and $\beta \leq \alpha$ then $\alpha = \beta$.

Theorem9. Let α be an [ordinal.](#page-18-2) The [ordinals](#page-18-2) $\lt \alpha$ form a [well-ordered](#page-12-0) set of [order type](#page-18-3) α .

*Proof.*Fix a [well-ordered](#page-12-0) set X with [order type](#page-18-3) α . Let

 $\tilde{X} = \{ Y \subset X \mid Y \text{ is a proper initial segment of } X \}.$ $\tilde{X} = \{ Y \subset X \mid Y \text{ is a proper initial segment of } X \}.$ $\tilde{X} = \{ Y \subset X \mid Y \text{ is a proper initial segment of } X \}.$

Then \lt (defined for [well-ordered](#page-12-0) sets) is a [linear order](#page-11-1) on \tilde{X} . Note that $x \mapsto I_x : X \to \tilde{X}$ $x \mapsto I_x : X \to \tilde{X}$ $x \mapsto I_x : X \to \tilde{X}$ is an [order-isomorphism.](#page-12-3)So X is a [well-ordered](#page-12-0) set of [order type](#page-18-3) α . So

 $\{OT(Y) | Y \in \tilde{X}\}\$ $\{OT(Y) | Y \in \tilde{X}\}\$ $\{OT(Y) | Y \in \tilde{X}\}\$

is the set of [ordinals](#page-18-2) $\langle \alpha \rangle$ and $Y \mapsto \mathrm{OT}(Y)$ is an [order-isomorphism](#page-12-3) from \tilde{X} to this \Box set.

Notation. $I_{\alpha} = \{\beta \mid \beta < \alpha\}$ $I_{\alpha} = \{\beta \mid \beta < \alpha\}$ 'A nice example of a [well-ordered](#page-12-0) set of [order type](#page-18-3) α '.

Proposition10. A non empty set S of [ordinals](#page-18-2) has a [least element.](#page-12-2)

*Proof.*Pick $\alpha \in S$. [I](#page-19-3)f α is not a [least element](#page-12-2) of S, then $S \cap I_{\alpha} \neq \emptyset$, and hence (by [Theorem 9\)](#page-10-3)it has a [least element](#page-12-2) β . Then β is a least element of S: if $\gamma \in S$, $\gamma < \alpha$, then $\gamma \in I_\alpha \cap S$ $\gamma \in I_\alpha \cap S$ $\gamma \in I_\alpha \cap S$, and so $\beta \leq \gamma$. \Box **Theorem 11** (Burati-Forti paradox)**.** The [ordinals](#page-18-2) do not form a set.

Proof. Assume otherwise and let X be the set of [ordinals.](#page-18-2) Then X isa [well-ordered](#page-12-0) set by [Proposition 10](#page-19-4) (and earlier results). Let α be the [order type](#page-18-3) of X. Then X is [order-isomorphic](#page-12-1) to I_{α} I_{α} , which is a proper [initial segment](#page-13-0) of $X, \chi \times \chi$. \Box

Remark. Let $S = \{ \alpha_i \mid i \in I \}$ be a set of [ordinals.](#page-18-2) Then by [Proposition 8](#page-10-2) the [nested](#page-18-1) set $\{I_{\alpha_i} \mid i \in I\}$ $\{I_{\alpha_i} \mid i \in I\}$ $\{I_{\alpha_i} \mid i \in I\}$ has an upper bound. So there exists an [ordinal](#page-18-2) α such that $\alpha_i \leq \alpha$ for all $i \in I$. By [Theorem 9](#page-10-3) we can take the [least](#page-12-2) such α . We take the least [element](#page-12-2) of

$$
\{\beta \in I_{\alpha} \cup \{\alpha\} \mid \forall i \in I, \alpha \le \beta\}.
$$

We denote by sup S the least upper bound on S. Note if $\alpha = \sup S$ then $I_{\alpha} =$ $I_{\alpha} =$ $\bigcup_{i\in I}I_{\alpha}.$ $\bigcup_{i\in I}I_{\alpha}.$ $\bigcup_{i\in I}I_{\alpha}.$

A list of some ordinals

$$
0, 1, 2, 3, \dots, \omega, \omega, \omega^{+} = \omega + 1, \omega + 2, \omega + 3, \dots,
$$

\n
$$
\omega + \omega = \omega \cdot 2 = \sup \{\omega + n \mid n < \omega\}, \omega \cdot 2 + 1, \omega \cdot 2 + 2, \dots, \omega \cdot 3, \dots, \omega \cdot 4, \dots
$$

\n
$$
\omega \cdot \omega = \omega^{2} = \{\omega \cdot n \mid n < \omega\}, \omega^{2} + 1, \omega^{2} + 2, \dots, \omega^{2} + \omega, \dots, \omega^{2} + \omega \cdot 2, \dots, \omega^{2} + \omega \cdot 3, \dots
$$

\n
$$
\omega^{2} \cdot 2, \dots, \omega^{2} \cdot 3, \dots, \omega^{3}, \dots, \omega^{4}, \dots, \omega^{\omega} = \sup \{\omega^{n} \mid n < \omega\}, \omega^{\omega} + 1, \dots
$$

\n
$$
\omega^{\omega} + \omega, \dots, \omega^{\omega} + \omega^{2}, \dots, \omega^{\omega} \cdot 2, \dots, \omega^{\omega} \cdot \omega = \omega^{\omega+1}, \dots, \omega^{\omega+2}, \dots, \omega^{\omega+2}, \dots, \omega^{\omega+3}, \dots
$$

\n
$$
\omega^{\omega^{2}}, \dots, \omega^{\omega^{3}}, \dots, \omega^{\omega^{\omega}}, \dots, \varepsilon_{0} = \sup \{\omega^{\omega} \cdot \omega^{2} \mid n < \omega\}, \dots
$$

\n
$$
\varepsilon_{1}, \dots, \varepsilon_{2}, \dots, \varepsilon_{\omega}, \dots, \varepsilon_{\varepsilon_{0}}, \dots
$$

Remarkably, all of these are countable! This can be seen by checking that each of them is a countable supremum of countable [ordinals,](#page-18-2) hence must be countable.

Start of

[lecture 7](https://notes.ggim.me/LST#lecturelink.7) **Question:** Does there exist an uncountable [ordinal,](#page-18-2) i.e. does there exist an uncountable [well-ordered](#page-12-0) set? Can we well order R?

Theorem 12. There exists an uncountable [ordinal.](#page-18-2)

Idea: Assume α is an uncountable [ordinal.](#page-18-2) Then there is a least such α :

 $\{\beta \in I_\alpha \cup \{\alpha\} \mid \beta \text{ uncountable}\}\neq \emptyset,$ $\{\beta \in I_\alpha \cup \{\alpha\} \mid \beta \text{ uncountable}\}\neq \emptyset,$ $\{\beta \in I_\alpha \cup \{\alpha\} \mid \beta \text{ uncountable}\}\neq \emptyset,$

so has a least element γ , say. So I_{γ} I_{γ} is exactly the set of all countable [ordinals.](#page-18-2) If X is a countable [well-ordered](#page-12-0) set, then there exists an injection $f: X \to \mathbb{N}$. Then $Y = f(X)$ is [well-ordered](#page-12-0) by $f(x) < f(y) \iff x < y$ in X. Then Y is [order-isomorphic](#page-12-1) to X.

Proof. Let

$$
A = \{ (Y, <) \in \mathbb{PN} \times \mathbb{P}(\mathbb{N} \times \mathbb{N}) \mid Y \text{ is well-ordered by } < \}.
$$

Let $B = \{OT(Y, \lt) \mid (Y, \lt) \in A\}$ $B = \{OT(Y, \lt) \mid (Y, \lt) \in A\}$ $B = \{OT(Y, \lt) \mid (Y, \lt) \in A\}$. By above, B is exactly the set of all countable [ordinals.](#page-18-2) Let $\omega_1 = \sup B$. If $\omega_1 \in B$ then $\omega_1^+ \notin B$ $\omega_1^+ \notin B$ $\omega_1^+ \notin B$, so ω_1^+ is an uncountable [ordinal.](#page-18-2) In fact, ω_1 is uncountable, since if ω_1 is countable, then ω_1^+ ω_1^+ must be countable as well (countable set union with a single element is still countable). \Box

Notation. ω_1 in the proof is the least uncountable [ordinal.](#page-18-2) In general, when we write ω_1 , we mean the least uncountable [ordinal](#page-18-2) (which may be constructed as in the previous proof).

Remark. Every proper [initial segment](#page-13-0) of ω_1 is countable. If $\alpha_1, \alpha_2, \alpha_3, \ldots \in \omega_1$, then

$$
\sup\{\alpha_1, \alpha_2, \ldots\} = \mathrm{OT}\left(\bigcup_{i \in \mathbb{N}} I_{\alpha_i}\right)
$$

is countable, hence not equal to ω_1 .

Theorem 13 (Hartog's Lemma). For any set X, there exists an [ordinal](#page-18-2) α such that α does not inject into X.

Proof. Repeat the proof of [Theorem 12](#page-20-1) replacing N with X.

 \Box

Notation. The least such α in [Hartog's Lemma](#page-21-1) is denoted by $\gamma(X)$. For example $\gamma(\omega) = \omega_1.$

$$
0, 1, 2, \ldots, \omega, \ldots, \varepsilon_0 = \omega^{\omega^{\omega^{\omega^{\cdot^{\cdot^{\cdot}}}}}}, \ldots, \varepsilon_1, \ldots, \varepsilon_{\varepsilon_{\varepsilon}}, \ldots, \omega_1, \ldots, \omega_1 \cdot 2, \ldots, \omega_2 = \gamma(\omega_1), \ldots
$$

.

Types of ordinals

Definition (Successor / limit ordinal). Let α be an [ordinal,](#page-18-2) and consider whether α has a greatest element (i.e. if X has [order type](#page-18-3) α , does X have a greatest element).

[I](#page-13-1)f yes: Let β be the greatest element of I_{α} . Then $I_{\alpha} = I_{\beta} \cup \{\beta\}$. So $\alpha = \beta^{+}$ $\alpha = \beta^{+}$ $\alpha = \beta^{+}$, and $\alpha = (\sup I_{\alpha})^{+}$ $\alpha = (\sup I_{\alpha})^{+}$ $\alpha = (\sup I_{\alpha})^{+}$ $\alpha = (\sup I_{\alpha})^{+}$ $\alpha = (\sup I_{\alpha})^{+}$. We call such an α a *successor ordinal*.

[I](#page-13-1)f no: Then $I_{\alpha} = \sup I_{\alpha}$, i.e. $\alpha = \sup \{ \beta \mid \beta < \alpha \}$. We say α is a *limit ordinal*.

Example. $1 = 0^+$ $1 = 0^+$ is a [successor ordinal,](#page-22-0) $\omega = \sup\{n < \omega\}$ $\omega = \sup\{n < \omega\}$ $\omega = \sup\{n < \omega\}$ is a [limit ordinal,](#page-22-1) ω^+ is a [successor ordinal,](#page-22-0) ω_1 is a [limit ordinal.](#page-22-1)

Weirdly, 0 isa [limit ordinal.](#page-22-1) Some people prefer to add a special category for 0, defining it as neithera [successor ordinal](#page-22-0) nora [limit ordinal.](#page-22-1)

Ordinal Arithmetic

Definition (Ordinal addition). We define $\alpha + \beta$ for α, β [ordinals](#page-18-2) by recursion on $β$ with $α$ fixed. We define:

$$
\beta = 0: \ \alpha + 0 = \alpha,
$$

$$
\beta = \gamma^+ : \ \alpha + \gamma^+ = (\alpha + \gamma)^+,
$$

$$
\beta \neq 0 \text{ limit: } \ \alpha + \beta = \sup{\alpha + \gamma \mid \gamma < \beta}.
$$

Remark. Technically, we fix α , β and define $\alpha + \gamma$ for all $\gamma \leq \beta$ by [Definition by](#page-8-0) [recursion](#page-8-0) as above. We do this for all β. This gives a well-defined '+' by uniqueness in the [Definition by recursion.](#page-8-0)

Similarly, we can prove things by induction: Let $p(\alpha)$ be a statement for each [ordinal](#page-18-2) α . Then

 $(\forall \alpha)((\forall \beta)((\beta < \alpha) \implies p(\beta)) \implies p(\alpha)) \implies (\forall \alpha)p(\alpha)$

If not, then there exists α with $p(\alpha)$ false. Then there exists least such α ($\{\beta \leq \alpha \mid$ $p(\beta)$ false} $\neq \emptyset$. Then $p(\beta)$ is true for all $\beta < \alpha$. By assumption, $p(\alpha)$ is true, $\hat{\mathcal{X}}$.

Example. For any α , $\alpha + 1 = \alpha + 0^+ = (\alpha + 0)^+ = \alpha^+$ $\alpha + 1 = \alpha + 0^+ = (\alpha + 0)^+ = \alpha^+$ $\alpha + 1 = \alpha + 0^+ = (\alpha + 0)^+ = \alpha^+$.

If $m < \omega$ $m < \omega$, then we have $m + 0 = m$ $m + 0 = m$ $m + 0 = m$ and for $n < \omega$ $n < \omega$,

 $m + (n + 1) = m + + n^{+} = (m + n)^{+} = (m + n) + 1 = m + n + 1$ $m + (n + 1) = m + + n^{+} = (m + n)^{+} = (m + n) + 1 = m + n + 1$ $m + (n + 1) = m + + n^{+} = (m + n)^{+} = (m + n) + 1 = m + n + 1$ $m + (n + 1) = m + + n^{+} = (m + n)^{+} = (m + n) + 1 = m + n + 1$ $m + (n + 1) = m + + n^{+} = (m + n)^{+} = (m + n) + 1 = m + n + 1$

So on ω , [ordinal addition](#page-22-3) is the usual addition.

More examples:

$$
\omega + 2 = \omega + 1^{+} = (\omega + 1)^{+} = \omega^{++}
$$

$$
\omega + \omega = \sup\{\omega + n \mid n < \omega\} = \sup\{\omega, \omega + 1, \omega + 2, ...\}
$$

$$
1 + \omega = \sup\{1 + n \mid n < \omega\} = \sup\{1, 2, 3, ...\} = \omega \neq \omega + 1
$$

So $+$ is not commutative.

Proposition 14. $\forall \alpha, \beta, \gamma$ [ordinals,](#page-18-2) $\beta \leq \gamma \implies \alpha + \beta \leq \alpha + \gamma$ $\beta \leq \gamma \implies \alpha + \beta \leq \alpha + \gamma$ $\beta \leq \gamma \implies \alpha + \beta \leq \alpha + \gamma$.

Proof. We prove this by [induction](#page-14-1) on γ (with α , β fixed).

 $\gamma = 0$: If $\beta \leq \gamma$, then $\beta = 0$, so result is true.

 $\gamma = \delta^+$ $\gamma = \delta^+$ If $\beta \leq \gamma$, then either $\beta = \gamma$ and we're done or $\beta \leq \delta$ and so $\alpha + \beta \leq \gamma$ $\alpha + \delta < (\alpha + \delta)^{+} = \alpha + \delta^{+} = \alpha + \gamma.$ $\alpha + \delta < (\alpha + \delta)^{+} = \alpha + \delta^{+} = \alpha + \gamma.$ $\alpha + \delta < (\alpha + \delta)^{+} = \alpha + \delta^{+} = \alpha + \gamma.$

 $\gamma \neq 0$ [limit](#page-22-1) If $\beta \leq \gamma$, then without loss of generality $\beta < \gamma$, so $\alpha + \beta \leq \sup\{\alpha + \delta\}$ $\alpha + \beta \leq \sup\{\alpha + \delta\}$ $\alpha + \beta \leq \sup\{\alpha + \delta\}$ $\delta < \gamma$ } = \alpha [+](#page-22-2) \gamma. \Box

Remark. From [Proposition 14,](#page-23-0) we get $\beta < \gamma \implies \alpha + \beta < \alpha + \gamma$ $\beta < \gamma \implies \alpha + \beta < \alpha + \gamma$ $\beta < \gamma \implies \alpha + \beta < \alpha + \gamma$. Indeed,

$$
\alpha + \beta < (\alpha + \beta)^{+} = \alpha + \beta^{+} \leq \alpha + \gamma.
$$

Note that $1 < 2$ $1 < 2$ $1 < 2$ but $1 + \omega = 2 + \omega = \omega$ $1 + \omega = 2 + \omega = \omega$, the proposition is not true when the order is swapped.

Lemma 15. Let α be an [ordinal](#page-18-2) and S a nonempty set of [ordinals.](#page-18-2) Then

$$
\alpha + \sup S = \sup \{ \alpha + \beta \mid \beta \in S \}.
$$

Proof. If $\beta \in S$, then $\alpha + \beta \leq \alpha + \sup S$ $\alpha + \beta \leq \alpha + \sup S$ $\alpha + \beta \leq \alpha + \sup S$ (by [Proposition 14\)](#page-23-0). Hence

$$
\sup\{\alpha + \beta \mid \beta \in S\} \le \alpha + \sup S.
$$

For the reverse inequality, consider two cases. If S has a greatest element, β say, then

 α [+](#page-22-2) sup $S = \alpha + \beta$.

For all $\gamma \in S$, $\gamma \leq \beta$, so by [Proposition 14,](#page-23-0) $\alpha + \gamma \leq \alpha + \beta$ $\alpha + \gamma \leq \alpha + \beta$ $\alpha + \gamma \leq \alpha + \beta$. It follows that

$$
\sup\{\alpha + \gamma \mid \gamma \in S\} = \alpha + \beta.
$$

If S has no greatest element, then $\lambda = \sup S$ is a $\neq 0$ [limit ordinal](#page-22-1) (if $\lambda = \gamma^+$ $\lambda = \gamma^+$ then $\gamma < \lambda$, so there exists $\delta \in S$ with $\gamma < \delta$, then $\lambda = \gamma^+ \leq \delta$ $\lambda = \gamma^+ \leq \delta$ $\lambda = \gamma^+ \leq \delta$, so $\lambda \in S$, contradiction). So

$$
\alpha + \sup S = \sup \{ \alpha + \beta \mid \beta < \lambda \}
$$

by definition. If $\beta < \gamma$ $\beta < \gamma$ $\beta < \gamma$, then there exists $\delta \in S$, $\beta < \delta$. By [Proposition 14,](#page-23-0) $\alpha + \beta \leq \alpha + \delta$ $\alpha + \beta \leq \alpha + \delta$ $\alpha + \beta \leq \alpha + \delta$. It follows that \Box

$$
\sup \{ \alpha + \beta \mid \beta < \lambda \} \text{ } wle \sup \{ \alpha + \delta \mid \delta \in S \}
$$

Proposition 16. $\forall \alpha, \beta, \gamma, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ $\forall \alpha, \beta, \gamma, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ $\forall \alpha, \beta, \gamma, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ $\forall \alpha, \beta, \gamma, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ $\forall \alpha, \beta, \gamma, (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$.

Proof. By induction on γ .

$$
\gamma = 0: (\alpha + \beta) + 0 = \alpha + \beta = \alpha + (\beta + 0).
$$

\n
$$
\gamma = \delta^+ : (\alpha + \beta) + \delta^+ = ((\alpha + \beta) + \delta)^+ = (\alpha + (\beta + \delta))^+ = \alpha + (\beta + \delta)^+ = \alpha + (\beta + \gamma).
$$

\n
$$
\gamma \neq 0 \text{ limit:}
$$

\n
$$
(\alpha + \beta) + \gamma = \sup\{(\alpha + \beta) + \delta \mid \delta < \gamma\}
$$

\n
$$
= \sup\{\alpha + (\beta + \delta) \mid \delta < \gamma\}
$$

\n
$$
= \alpha + \sup\{\beta + \delta \mid \delta < \gamma\}
$$

\n
$$
= \alpha + (\beta + \delta)
$$

Start of

[lecture 8](https://notes.ggim.me/LST#lecturelink.8) **Remark.** The definition of $\alpha + \beta$ $\alpha + \beta$ $\alpha + \beta$ we gave last time is called the "induction definition".

Definition (Synthetic ordinal addition)**.** Given [well-ordered](#page-12-0) sets X, Y , the disjoint union $X \sqcup Y$ is the [well-ordered](#page-12-0) set $\stackrel{X}{\leftrightarrow} \stackrel{Y}{\leftrightarrow}$. Formally, it is the set $X \times \{0\} \cup Y \times \{1\}$ with ordering:

$$
(x, i) < (y, j) \iff \begin{cases} \text{either } i = j = 0 \text{ and } x < y \text{ in } X \\ \text{or } i = j = 1 \text{ and } x < y \text{ in } Y \\ \text{or } i = 0, j = 1 \text{ and } x \in X, y \in Y \end{cases}
$$

Sothis is a [well-ordered](#page-12-0) set Z which has an [initial segment](#page-13-0) X' to X and $Z \setminus X'$ is [order-isomorphic](#page-12-1) to Y . This is unique up to [order-isomorphism.](#page-12-3)

For [ordinals](#page-18-2) $\alpha, \beta + \beta = \alpha \sqcup \beta$ (more precisely, $\alpha + \beta$ is the [order type](#page-18-3) of $X \sqcup Y$ where $\alpha = \mathrm{OT}(X), \ \beta = \mathrm{OT}(Y)$).

No[t](#page-25-1)e. $\alpha^+ = \alpha \sqcup 1$ $\alpha^+ = \alpha \sqcup 1$ $\alpha^+ = \alpha \sqcup 1$. With this definition, it's easy to see that $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$ since $(\alpha \sqcup \beta) \sqcup \gamma$ $(\alpha \sqcup \beta) \sqcup \gamma$ $(\alpha \sqcup \beta) \sqcup \gamma$ is [order-isomorphic](#page-12-1) to $\alpha \sqcup (\beta \sqcup \gamma)$.

Also, we can easily prove $\beta \leq \gamma \implies \alpha + \beta \leq \alpha + \gamma$ $\beta \leq \gamma \implies \alpha + \beta \leq \alpha + \gamma$ $\beta \leq \gamma \implies \alpha + \beta \leq \alpha + \gamma$ $\beta \leq \gamma \implies \alpha + \beta \leq \alpha + \gamma$ $\beta \leq \gamma \implies \alpha + \beta \leq \alpha + \gamma$ as $\alpha \sqcup \beta$ is an [initial segment](#page-13-0) of $\alpha \sqcup \gamma$.

Proposition 17. The [inductive](#page-22-4) and [synthetic](#page-25-2) definitions of [ordinal](#page-18-2) addition coincide.

Proof. Temporarily, let $\alpha + \beta$ $\alpha + \beta$ $\alpha + \beta$ denote the [synthetic addition,](#page-25-2) and $\alpha + \beta$ denote the [inductive addition.](#page-22-4) We prove $\forall \alpha, \beta \alpha + \beta + \beta$ $\forall \alpha, \beta \alpha + \beta + \beta$ $\forall \alpha, \beta \alpha + \beta + \beta$ by induction on β (with α fixed).

 $\beta = 0$ $\beta = 0$ $\beta = 0$: $\alpha + 0 = \alpha = \alpha \sqcup 0$ $\alpha + 0 = \alpha = \alpha \sqcup 0$ $\alpha + 0 = \alpha = \alpha \sqcup 0$.

$$
\beta = \delta^+ : \ \alpha + \beta = (\alpha + \delta)^+ = (\alpha + \delta)^+ = (\alpha \sqcup \delta) \sqcup 1 = \alpha \sqcup (\delta \sqcup 1) = \alpha + \delta^+ = \alpha + \beta.
$$

$$
\beta \neq 0 \text{ limit:} \qquad \alpha + \beta = \sup \{ \alpha + \gamma \mid \gamma < \beta \} \\
= \sup \{ \alpha + \gamma \mid \gamma < \beta \} \\
\bigcup_{\gamma < \beta} \alpha \sqcup \gamma \\
= \alpha \sqcup \bigcup_{\gamma < \beta} \gamma \\
= \alpha \sqcup \beta \\
= \alpha + \beta
$$

(as
$$
\alpha \sqcup \gamma
$$
, $\gamma < \beta$ are nested).

Ordinal Multiplication

We give two definitions: inductive and syntetic.

Definition (Inductive multiplication)**.** Define $\alpha \cdot \beta$ by recursion on β (α fixed):

- $\alpha \cdot 0 = 0$
- $\alpha \cdot \beta^+ = \alpha \cdot \beta + \alpha$ $\alpha \cdot \beta^+ = \alpha \cdot \beta + \alpha$ $\alpha \cdot \beta^+ = \alpha \cdot \beta + \alpha$
- $\alpha \cdot \beta = \sup\{\alpha \cdot \gamma \mid \alpha < \beta\}$ (for $\beta \neq 0$ [limit ordinal\)](#page-22-1)

Example. For $m, n < \omega$ $m, n < \omega$ $m, n < \omega$, we have $m \cdot 0 = 0$, $m \cdot (n+1) = m \cdot n^+ = m \cdot n + m$ $m \cdot (n+1) = m \cdot n^+ = m \cdot n + m$ $m \cdot (n+1) = m \cdot n^+ = m \cdot n + m$. This gives the usual multiplication.

$$
\omega \cdot 2 = \omega \cdot 1^+ = \omega \cdot 1 + \omega = \omega \cdot 0^+ + \omega = (\omega \cdot 0 + \omega) + \omega = \omega + \omega
$$

 $2 \cdot \omega = \sup\{2 \cdot n \mid n < \omega\} = \omega \neq \omega \cdot 2$ $2 \cdot \omega = \sup\{2 \cdot n \mid n < \omega\} = \omega \neq \omega \cdot 2$ $2 \cdot \omega = \sup\{2 \cdot n \mid n < \omega\} = \omega \neq \omega \cdot 2$

So multiplication is not commutative.

Definition (Synthetic multiplication). Given [well-ordered](#page-12-0) sets X, Y , we [well-order](#page-12-0) $X \times Y$ by

$$
(x, y) < (w, z) \iff \begin{cases} \text{either } y = z \text{ and } x < w \text{ in } X \\ \text{or } y < z \text{ in } Y \end{cases}
$$

For [ordinals](#page-18-2) α , β define $\alpha \cdot \beta = \alpha \times \beta$ (the [order type](#page-18-3) of $X \times Y$ where X has [order](#page-18-3) [type](#page-18-3) α , Y has [order type](#page-18-3) β).

Note. As before, the two definitions coincide (proof by inductionon β).

Properties:

$$
\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma
$$

$$
\beta \le \gamma \implies \alpha \cdot \beta \le \alpha \cdot \gamma
$$

On [Example Sheet 2,](http://www.dpmms.cam.ac.uk/study/II/Logic/) you will check whether the following are true:

$$
(\alpha + \beta) \cdot \gamma = \alpha \cdot \gamma + \beta \cdot \gamma
$$

$$
\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma
$$

Ordinal Exponentiation

Define α^{β} by recursion on β (α fixed):

- $\alpha^0 = 1$
- $\alpha^{\beta^+} = \alpha^{\beta} \cdot \alpha$ $\alpha^{\beta^+} = \alpha^{\beta} \cdot \alpha$ $\alpha^{\beta^+} = \alpha^{\beta} \cdot \alpha$
- $\alpha^{\beta} = \sup \{ \alpha^{\gamma} \mid \gamma < \beta \}$ (for $\beta \neq 0$ [limit ordinal\)](#page-22-1)

Example. For $m, n < \omega, m^n$ $m, n < \omega, m^n$ $m, n < \omega, m^n$ has usual meaning.

$$
\omega^2 = \omega^{1^+} = \omega^1 \cdot \omega = \omega^{0^+} \cdot \omega = (\omega^0 \cdot \omega) \cdot \omega = \omega \cdot \omega
$$

$$
2^{\omega} = \sup \{ 2^n \mid n < \omega \} = \omega
$$

which is countable!

**** Non-examinable ****

Let X be a separable Banach space, then $X \hookrightarrow C[0, 1]$ (universal property for separable Banach spaces).

Question: Does there exist a universal space for separable reflexive spaces?

Answer: No (Szlenk).

To each Banach space X you associate an [ordinal](#page-18-2) $Sz(X)$ (Szlenk index of X). For all separable X, $Sz(X) \leq \omega_1$.

$$
Sz(X) < \omega_1 \iff X^* \text{ separable}
$$

$$
X \hookrightarrow Y \implies Sz(X) \le Sz(Y)
$$

 $\forall \alpha < \omega_1$, there exists separable reflexive X_α such that $Sz(X_\alpha) > \alpha$ $Sz(X_\alpha) > \alpha$ $Sz(X_\alpha) > \alpha$. If Z is separable reflexive and for all separable reflexive X, $X \hookrightarrow Z$ then $X_{\alpha} \hookrightarrow Z$ for all $\alpha < \omega_1$, so $Sz(Z) \ge Sz(X_{\alpha}) > \alpha$ $Sz(Z) \ge Sz(X_{\alpha}) > \alpha$ $Sz(Z) \ge Sz(X_{\alpha}) > \alpha$. So $Sz(Z) = \omega_1$, contradiction.

This is the end of the non-examinable part.

3 Posets and Zorn's Lemma

Definition (Partial order)**.** A *partial order* on a set X is a relation \leq that is: **reflexive:** $\forall x \in X, x \leq x$ **antisymmetric:** $\forall x, y \in X, (x \leq y \land y \leq x) \implies x = y$ **transitive:** $\forall x, y, z \in X, (x \leq y \land y \leq z) \implies x \leq z$ We will write $x < y$ for " $x \leq y$ and $x \neq y$ ". This is: **irreflexive:** $\forall x, \neg(x < x)$. **transitive:** $\forall x, y, z, ((x \leq y) \land (y \leq z)) \implies x \leq z$.

Definition (Partially ordered set)**.** A *partially ordered set* or *poset* is a set X with a [partial order.](#page-28-1)

Examples:

- (1) Every [linearly ordered](#page-11-1) set.
- (2) N with $a \leq b \iff a \mid b$.
- (3) For a set X $\mathbb{P}X$ with $a \leq b \iff a \subset b$.
- (4)Every subset of a [partially ordered set:](#page-28-3) for example, if G is a group, then

 ${H \in \mathbb{P}G \mid H \text{ is a subgroup of } G}$

(5) Posets given by Hasse diagrams. For example

 $X = \{a, b, c, d, e, f\}$. $b, c > a, d > b, c, e > c, f > d, e$ $b, c > a, d > b, c, e > c, f > d, e$ $b, c > a, d > b, c, e > c, f > d, e$ $b, c > a, d > b, c, e > c, f > d, e$ $b, c > a, d > b, c, e > c, f > d, e$ $b, c > a, d > b, c, e > c, f > d, e$ $b, c > a, d > b, c, e > c, f > d, e$ $b, c > a, d > b, c, e > c, f > d, e$ $b, c > a, d > b, c, e > c, f > d, e$ and all relations that follow by transitivity. $(e \nsim b, f > a)$ $(e \nsim b, f > a)$ $(e \nsim b, f > a)$.

Ingeneral, a Hasse diagram for a [partially ordered set](#page-28-3) X is a grawing of elements of X where we join x to y with an upward line if $y > x$ and $\frac{4}{x}$ with $y > z > x$. For example:

Start of

[lecture 9](https://notes.ggim.me/LST#lecturelink.9) **Definition** (Chain)**.** A subset S ofa [partially ordered set](#page-28-3) X is a *chain* if it is [linearly ordered](#page-11-1) by the [partial order](#page-28-1) on X.

Example.

- (1) Every [linearly ordered](#page-11-1) set isa [chain](#page-29-1) in itself.
- (2) Any subset ofa [chain](#page-29-1) ina [partially ordered set.](#page-28-3)
- (3)In N with $a \leq b \iff a \mid b$, $\{2^n \mid n = 0, 1, 2, \ldots\}$ is a [chain.](#page-29-1)
- (4)In $\mathbb{P}(\{1,2,3\})$ with $\subset,$ $\{\emptyset,\{1\},\{1,2\},\{1,2,3\}\}$ is a [chain.](#page-29-1)
- (5) $\{a, c, d, e\}$ is a chain in

Definition (Antichain)**.** A subset S ofa [partially ordered set](#page-28-3) X is an *antichain* if no two distinct members of S are related, i.e. $\forall x, y \in S, x \leq y \implies x = y$.

- (1)In a [linearly ordered](#page-11-1) set there is no [antichain](#page-30-0) of size > 1 .
- (2) In $\mathbb N$ with $a \leq b \iff a \mid b$, the set of primes is an [antichain.](#page-30-0)
- (3) In $\mathbb{P}(\{1, 2, \ldots, n\})$ with \subset , for any $k, 0 \le k \le n$,

$$
\mathcal{F}_k = \{ A \subset \{1, \ldots, n\} \mid |A| = k \}
$$

is an [antichain.](#page-30-0)

(4) In

Definition(Upper bound). Let S be a subset of a [partially ordered set](#page-28-3) X. Say $x \in X$ is an *upper bound* for S if $\forall y \in S, y \leq x$.

Definition (Least upper bound). Say $x \in X$ is a *least upper bound* or *supremum* for S if x is an [upper bound](#page-32-0) for S and $x \leq y$ for all [upper bounds](#page-32-0) y for S.

If it exists, we denote this by sup S or $\bigvee S$ ('join' of S).

Example.

- (1) In \mathbb{R} , sup $[0, 1] = 1$, sup $(0, 1) = 1$.
- (2) Q has no [supremum](#page-32-2) in Q, as it doesn't even have any [upper bound.](#page-32-0)
- (3) In

 ${a, b}$ has [upper bounds,](#page-32-0) for example c, d, but no [least upper bound.](#page-32-3)

(4) If $X = \mathbb{P}A$, A any set, $S \subset X$, then [sup](#page-32-1) $S = \bigcup \{ B \subset A \mid B \in S \}.$

Definition (Complete Partial Order)**.** A [partially ordered set](#page-28-3) X is *complete* if every $S \subset X$ $S \subset X$ $S \subset X$ has a [supremum.](#page-32-2)

Example.

- 1. PA for any A is [complete.](#page-33-0)
- 2. [0, 1] is [complete.](#page-33-0)
- 3. R is not [complete.](#page-33-0)
- 4. $\mathbb{Q} \cap [0,2]$ is not [complete.](#page-33-0)

Remark. A [complete](#page-33-0) [partially ordered set](#page-28-3) X has a greatest element [sup](#page-32-1) X and a least element [sup](#page-32-1) \emptyset . In particular, $X \neq \emptyset$.

Definition (Order-preserving function). Let $f : X \to Y$ be a function between [partially ordered sets](#page-28-3) X, Y. Say f is *order-preserving* if $\forall x, y \in X, x \leq y \iff$ $f(x) \leq f(y)$.

Note. f need not be injective. But f is [order-preserving](#page-33-1) injective if and only if $\forall x, y \in X, x < y \iff f(x) < f(y).$ $\forall x, y \in X, x < y \iff f(x) < f(y).$ $\forall x, y \in X, x < y \iff f(x) < f(y).$ $\forall x, y \in X, x < y \iff f(x) < f(y).$ $\forall x, y \in X, x < y \iff f(x) < f(y).$

Example. $f : \mathbb{N} \to \mathbb{N}$, $f(n) = n + 1$ (with the usual order).

 $g: \mathbb{P}(A) \to \mathbb{P}(A), A \mapsto A \cup B, B$ fixed.

Definition (Fixed point)**.** Let X be any set. Then a *fixed point* for a function $f: X \to X$ is an element $x \in X$ such that $f(x) = x$.

Theorem 1 (Knaster-Tarski Fixed Point Theorem)**.** If X isa [complete](#page-33-0) [partially](#page-28-3) [ordered set](#page-28-3)and $f: X \to X$ is [order-preserving,](#page-33-1) then f has a [fixed point.](#page-33-2)

Proof. Let $S = \{x \in X \mid x \leq f(x)\}\$. Let $z = \sup S$. Let $x \in S$. Then $x \leq z$, so $f(x) \leq f(z)$. Since $x \in S$, $x \leq f(x)$, so by transitivity, $x \leq f(z)$. Thus $f(z)$ is an [upper bound](#page-32-0) for S, so $z \leq f(z)$. It follows that $f(z) \leq f(f(z))$. So $f(z) \in S$, and thus $f(z) \leq z$ $f(z) \leq z$ $f(z) \leq z$. So z is a [fixed point.](#page-33-2) \Box

Corollary 2 (Schröder-Bernstein Theorem)**.** Let A, B be sets and assume there exist injections $f : A \to B$ and $g : B \to A$. Then there exists a bijection $h : A \to B$.

Proof. We seek partitions $A = P \cup \mathbb{Q}$, $B = R \cup S$ such that $(P \cap Q = \emptyset, R \cap S = \emptyset)$, $f(P) = R$, $g(S) = Q$. Then we will have that

$$
h: A \to B, \qquad h = \begin{cases} f & \text{on } P \\ g^{-1} & \text{on } Q \end{cases}
$$

Such partitions exist if and only if there exists $P \subset A$ such that

$$
A \setminus g(B \setminus f(P)) = P.
$$

Let $X = \mathbb{P}A$ with ordering by \subset . Define $H : X \to X$,

$$
H(P) = A \setminus g(B \setminus f(P)).
$$

 H is [order-preserving](#page-33-1) and X is [complete,](#page-33-0) so by [Knaster-Tarski Fixed Point Theorem,](#page-3-7) we can find such P. \Box

Zorn's Lemma

Definition(Maximal element). Say an element x in a [partially ordered set](#page-28-3) X is *maximal* if $\forall y \in X, x \leq y \implies x = y$. In other words, there is no $y \in X$ with $y > x$ $y > x$.

Example. In $\mathbb{P}A$, A is [maximal,](#page-35-0) A is even a greatest element. In general, "greatest" \implies [maximal,](#page-35-0) but the other way round does not hold.

Example. In:

c, d are both [maximal,](#page-35-0) but there does not exist a greatest element.

Theorem 3 (Zorn's Lemma)**.** Let X be a (non-empty) [partially ordered set](#page-28-3) such that every [chain](#page-29-1)in X has an [upper bound](#page-32-0) in X . Then X has a [maximal element.](#page-35-1)

Remark. \emptyset is a [chain](#page-29-1) in X, so it has an [upper bound,](#page-32-0) so $X \neq \emptyset$. Often we check the [chain](#page-29-1) condition by checking it for \emptyset (i.e. that $X \neq \emptyset$) and then for $\neq \emptyset$ [chains.](#page-29-1)

Proof. Assume X has no [maximal element.](#page-35-1) For each $x \in X$, fix $x' > x$ $x' > x$ $x' > x$. We also fix an [upper bound](#page-32-0) $u(C)$ for every [chain](#page-29-1) $C \subset X$. Let $\gamma = \gamma(X)$ (from [Hartog's Lemma\)](#page-21-1). Define $f: \gamma \to X$ by [Definition by recursion:](#page-8-0)

- $f(0) = u(\emptyset)$.
- $f(\alpha + 1) = f(\alpha)'$.
- $f(\lambda) = u({f(\alpha) | \alpha < \lambda})' (\lambda \neq 0$ [limit ordinal\)](#page-22-1).
An easy [induction](#page-14-0) shows that $\forall \alpha < \beta$ $\forall \alpha < \beta$ $\forall \alpha < \beta$ (in γ), $f(\alpha) < f(\beta)$ (on β, α, α fixed). This also shows $\{f(\alpha) \mid \alpha < \beta\}$ is a [chain](#page-29-0) for all $\beta < \alpha$. Hence f is an injection. This contradicts the definition of $\gamma(X)$. \Box

Remark. Technically, for $\lambda \neq 0$ a [limit ordinal,](#page-22-0) $f(\lambda)$ should be defined as above if ${f(\alpha) \mid \alpha < \gamma}$ is a [chain](#page-29-0) and $f(\lambda) = u(\emptyset)$ otherwise. Then by [induction,](#page-14-0) $\alpha < \beta \implies f(\alpha) < f(\beta)$ $\alpha < \beta \implies f(\alpha) < f(\beta)$ $\alpha < \beta \implies f(\alpha) < f(\beta)$, so the 'otherwise' clause never happens.

Start of

[lecture 10](https://notes.ggim.me/LST#lecturelink.10) **Warning.** Recall that when studying [linearly ordered](#page-11-0) sets, we noted that

f is [order-preserving](#page-33-0) and injective $\iff \forall x, y \in A, x < y \implies f(x) < f(y)$ $\iff \forall x, y \in A, x < y \implies f(x) < f(y)$ $\iff \forall x, y \in A, x < y \implies f(x) < f(y)$ $\iff \forall x, y \in A, x < y \implies f(x) < f(y)$ $\iff \forall x, y \in A, x < y \implies f(x) < f(y)$.

The \Rightarrow direction is true for [partially ordered sets,](#page-28-1) but the \Leftarrow direction is not true in general fora [partially ordered set.](#page-28-1)

Applications of Zorn's Lemma

Theorem 4. Every vector space V (over some field) has a basis.

Proof. We seek a maximal linearly independent set $B \subset V$. Then we're done: if $V \neq \langle B \rangle$, then for any $x \in V \setminus \langle B \rangle$, $B \cup \{x\}$ is also linearly independent, which would contradict maximality of B.

Let $X = \{A \subset v \mid A \text{ is linearly independent}\}$ ordered by inclusion. Let $\{A_i \mid i \in I\}$ bea [chain](#page-29-0) in X. Then this has upper bound $A = \bigcup_{i \in I} A_i$. We first need to check that A is linearly independent. Assume $\sum_{j=1}^{n} \lambda_j x_j = 0$ is a linear relation on A (where $x_1, \ldots, x_n \in A$, and $\lambda_1, \ldots, \lambda_n$ are scalars). For each $1 \leq j \leq n$, pick $i_j \in I$ such that $x_j \in A_{i_j}$. Since the A_i form a chain, there exists $1 \leq m \leq n$ such that $A_{i_j} \subset A_{i_m}$ for all $1 \leq j \leq n$. Then $\sum_{j=1}^{n} \lambda_j x_j = 0$ is a linear relation on the linearly independent set A_{i_m} , so $\lambda_1 = \cdots = \lambda_n = 0$. Thus A is linearly independent. П

Remark.

- (1) A very similar proof shows that if $B_0 \subset V$ is linearly independent, then V has a basis B such that $B \supset B_0$.
- (2) $\mathbb R$ is a vector space over $\mathbb Q$, so has a basis (Hamel basis). This can be used to show the existence of non-Lebesgue-measurable sets (see [Probability & Measure\)](https://notes.ggim.me/PM).
- (3) $\mathbb{R}^{\mathbb{N}}$ the real vector space of real sequences has no countable basis, but we now know it has a basis.
- (4) In topology: Tychonoff's Theorem. In Functional Analysis: Hahn-Banach Theorem. In algebra: maximal ideals in rings with 1.

The next application of [Zorn's Lemma](#page-7-0) completes the proof of [Model Existence Lemma:](#page-8-0)

Theorem5. Let P be any set of [primitive proposition,](#page-2-0) $S \subset L = L(P)$ be [consistent.](#page-7-1) Thenthere exists a [consistent](#page-7-1) set $\overline{S} \subset L$ $\overline{S} \subset L$ such that $S \subset \overline{S}$ and $\forall t \in L$ either $t \in \overline{S}$ or $\neg t \in \overline{S}$.

Proof. We seek a maximal consistent set $\overline{S} \supset S$. Then we're done as follows: given $t \in L$, one of $S \cup \{t\}$ and $S \cup \{\neg t\}$ is consistent, otherwise $S \cup \{t\} \vdash \bot$, $\overline{S} \cup \{\neg t\} \vdash \bot$, and so by the [Deduction Theorem,](#page-6-0) $\overline{S} \vdash \neg t$, $\overline{S} \vdash \neg \neg t$ and hence $\overline{S} \vdash \bot$ by [MP,](#page-5-1) contradiction. Hence by maximality of \overline{S} , either $t \in \overline{S}$ or $\neg t \in \overline{S}$.

[L](#page-2-1)et $X = \{T \subset L \mid S \subset T, T \text{ is consistent}\},\$ $X = \{T \subset L \mid S \subset T, T \text{ is consistent}\},\$ $X = \{T \subset L \mid S \subset T, T \text{ is consistent}\},\$ [partially ordered](#page-28-2) by $\subset X \neq \emptyset$ since $S \in X$. Let $C = \{T_i \mid i \in I\}$ be a non-empty [chain](#page-29-0) in X. Let $T = \bigcup_{i \in I} T_i$. Then $S \subset T \ (I \neq \emptyset)$. If $T \vdash \bot$ then as proofs are finite, there exists finite $J \subset I$ such that $\bigcup_{j \in J} T_j \vdash \bot$. Since C is a chain, there exists $j_0 \in J$ such that $\bigcup_{j \in J} T_j = T_{j_0}$, so $T_{j_0} \vdash \perp$, contradiction. By [Zorn's Lemma,](#page-7-0) X hasa [maximal element.](#page-35-0) \Box

Theorem 6 (Well-ordering principle)**.** Every set can be well-ordered.

Example. R can be [well-ordered.](#page-12-0) Think about this for a bit. This feels very unnatural!

Proof. Let A be a set. Let

 $X = \{(B, R) \in \mathbb{P}A \times \mathbb{P}(A \times A) \mid R \text{ is a well-ordering of } B\}$ $X = \{(B, R) \in \mathbb{P}A \times \mathbb{P}(A \times A) \mid R \text{ is a well-ordering of } B\}$ $X = \{(B, R) \in \mathbb{P}A \times \mathbb{P}(A \times A) \mid R \text{ is a well-ordering of } B\}$ $X = \{(B, R) \in \mathbb{P}A \times \mathbb{P}(A \times A) \mid R \text{ is a well-ordering of } B\}$ $X = \{(B, R) \in \mathbb{P}A \times \mathbb{P}(A \times A) \mid R \text{ is a well-ordering of } B\}$

[partially ordered](#page-28-2) by extension: $(B_1, R_1) \leq (B_2, R_2)$ if and only if $B_1 \subset B_2$, $R_1 =$ $R_2 \cap (B_1 \times B_1)$ (R_1 is the restriction of R_2 to B_1) and B_1 is an [initial segment](#page-13-0) of B_2 . Note $X \neq \emptyset$, since $(\emptyset, \emptyset) \in X$.

Let $C = \{(B_i, R_i) \mid i \in I\}$ be a [chain](#page-29-0) in X, i.e. a nested set of [well-ordered](#page-12-0) sets. Then

$$
\left(\bigcup_{i\in I}\bigcup_{i\in I}R_i\right)
$$

is an upper bound as in [Section 2.](#page-11-2)

By [Zorn's Lemma,](#page-7-0) X has a maximal element (B, R) . We need $B = A$. If not, pick $x \in A \setminus B$, then

$$
(B, R)^{+} = (B \cup \{x\}, R \cup \{(b, x) \mid b \in B\}) \in X
$$

and $(B, R) < (B, R)^+$ $(B, R) < (B, R)^+$ $(B, R) < (B, R)^+$, contradiction.

Remark. Often in applications of [Zorn's Lemma,](#page-7-0) the maximal object whose existence it asserts cannot be described explicitly ("magical").

The Axiom of Choice (AC)

In the proof of [Zorn's Lemma](#page-7-0) we used two functions:

$$
X \to X
$$

\n
$$
x \mapsto x' \in \{y \mid y > x\}
$$

\n
$$
u: \{C \subset X \mid C \text{ is a chain}\} \to X
$$

\n
$$
u(C) \in \{x \in X \mid x \text{ is an upper bound for } C\}
$$

These are known as choice functions.

Axiom of Choice says:

For any set $\{A_i \mid i \in I\}$ of non-empty sets, there exists a function $f: I \to \bigcup_{i \in I} A_i$ such that $f(i) \in A_i$ for all $i \in I$. We call this a *choice function*.

This is different in character from other rules for building sets (\cup , $\mathbb P$ etc) in the sense that choice functions need not be unique. For this reason, we're often interested in proving things without [axiom of choice.](#page-38-0)

Note. When I is finite, we can prove existence of choice functions by induction on $|I|.$

 \Box

Theorem 7. The following are equivalent:

- (i) [Axiom of choice.](#page-38-0)
- (ii) [Zorn's Lemma.](#page-7-0)
- (iii) [Well-ordering principle.](#page-9-0)

Proof.

 $AC \Rightarrow ZL$ See proof of [Theorem 3.](#page-7-0)

 $ZL \Rightarrow WO$ See proof of [Theorem 6.](#page-9-0)

 $WO \Rightarrow AC$ Let $\{A_i \mid i \in I\}$ be a set of non-empty sets. Let $A = \bigcup_{i \in I} A_i$. [Well order](#page-12-0) A and define $f: I \to A$ by setting $f(i)$ to be the least element of A_i . \Box

Exercise: Prove the implications directly.

Start of

[lecture 11](https://notes.ggim.me/LST#lecturelink.11)

**** Non-examinable ****

Definition (Chain-complete). A [partially ordered set](#page-28-1) X is *chain-complete* if $X \neq \emptyset$ and every [chain](#page-29-0) has a supremum.

Example. Every complete [partially ordered set](#page-28-1) is chain-complete. Finite nonempty [partially ordered sets](#page-28-1)are chain-complete. If S is a [partially ordered set,](#page-28-1) then

 $X = \{C \subset C \mid C$ is a chain}

ordered by \subset is chain-complete, but not complete in general.

Definition (Inflationary function)**.** A function $f: X \to X$, X a [partially ordered](#page-28-1) [set](#page-28-1) is *inflationary* if $x \leq f(x)$ for all $x \in X$.

Theorem (Bourbak-Witt fixed point theorem). If X is chain-complete and $f : X \to Y$ X is inflationary, then f has a fixed point.

Proof 1 (with [axiom of choice\)](#page-38-0). By [Zorn's Lemma,](#page-7-0) X hasa [maximal element.](#page-35-0) Then $x \leq f(x)$, so $x = f(x)$. \Box

Proof 2 (without [axiom of choice\)](#page-38-0). Fix $x_0 \in X$. Let $\gamma = \gamma(X)$ *.* Define $g : \gamma \to X$ by recursion:

- $q(0) = x_0$
- $q(\alpha + 1) = f(q(\alpha))$ $q(\alpha + 1) = f(q(\alpha))$ $q(\alpha + 1) = f(q(\alpha))$
- $g(\lambda) = \sup\{g(\alpha) \mid \alpha < \lambda\}$ ($\lambda \neq 0$ [limit\)](#page-22-0)

By [induction](#page-14-0) $\forall \alpha < \gamma, g(\alpha) \leq g(\alpha + 1)$ $\forall \alpha < \gamma, g(\alpha) \leq g(\alpha + 1)$ $\forall \alpha < \gamma, g(\alpha) \leq g(\alpha + 1)$

Eitherthere exists $\alpha < \gamma$ with $g(\alpha + 1) = g(\alpha)$ $g(\alpha + 1) = g(\alpha)$ $g(\alpha + 1) = g(\alpha)$. Then $g(\alpha)$ is a [fixed point](#page-33-1) of f. Otherwise g is injective, which would contradict [Hartog's Lemma.](#page-21-1) \Box

Remark. [Axiom of Choice](#page-38-0) and [Bourbak-Witt fixed point theorem](#page-39-0) implies [Zorn's](#page-7-0) [Lemma](#page-7-0). [Bourbak-Witt fixed point theorem](#page-39-0) is sometimes called "the choice-free part of the proof of [Zorn's Lemma"](#page-7-0).

Proof of Remark. Let X bea [partially ordered set](#page-28-1) in which every [chain](#page-29-0) has an [upper](#page-32-0) [bound](#page-32-0).

Case 1: X is chain-complete. Assume X has no [maximal element.](#page-35-0) Fix a choice function $g: (\mathbb{P}X) \setminus \{\emptyset\} \to X$. Define

$$
f: X \to X, f(x) = g(\{y \in X \mid x < y\}).
$$

Then $x < f(x)$ $x < f(x)$ $\forall x \in X$, contradicting [Bourbak-Witt fixed point theorem.](#page-39-0)

Case2: General case. We first prove that $C = \{C \subset X \mid C$ is a [chain](#page-29-0) has a [maximal](#page-35-0) [element.](#page-35-0) (This is the Hausdorff Maximality Principle). Follows from Case 1, since $\mathcal C$ is chain-complete.

Let C be a maximal chain in X. Let x be an [upper bound](#page-32-0) of C. If $x < y$ $x < y$ in X, then $C \cup \{y\}$ $C \cup \{y\}$ $C \cup \{y\}$ is a [chain](#page-29-0) which is $\supseteq C$, contradicting maximality. So x is [maximal element.](#page-35-0) \square

Lattices, Boolean algebras – not covered (for now)

This is the end of the non-examinable part.

4 First-order Predicate Logic

In [Propositional Logic](#page-2-4) we had a set P of [primitive propositions](#page-2-0) and then we combined them using logical connectives \Rightarrow , \perp (and shorthands \wedge , \vee , \neg , \neg) to form the language $L = L(P)$ $L = L(P)$ $L = L(P)$ $L = L(P)$ of all (compound) [propositions.](#page-2-3) We attached no meaning to [primitive propo](#page-2-0)[sitions.](#page-2-0)

Aim: To develop languages to describe a wide range of mathematical theorems. We will replace [primitive propositions](#page-2-0) with mathematical statements.

Example. In language of groups:

 $m(x, m(y, z)) = m(m(x, y), z), \qquad m(x, i(x)) = e.$

In language of [partially ordered sets:](#page-28-1)

 $x \leq y$.

This will need variables (x, y, z, \ldots) , operation symbols $(m, i, e$ with arities 2, 1, 0 respectively) and predicates (for example \leq with arity 2). Note that "arity" means the number of elements that the function takes as input.

We will then combine these to build formulae:

Example. In the language of groups:

 $(\forall x)(m(x, i(x)) = e).$

In the language of [partially ordered sets:](#page-28-1)

 $(\forall x)(\forall y)(\forall z)((x \leq y \land y \leq z) \implies (x \leq z)).$

[Valuations](#page-3-4) will be replaced by a structure, a set A and "truth-functions" $p_A : A^n \to \{0,1\}$ for every formula p.

If we have a set S of formulae, a model of S is a structure satisfying all $p \in S$. Then we will define $S \models t$ in the same way as in [Section 1.](#page-2-4) $S \vdash t$ will be the same as in [Section 1](#page-2-4) but more complex.

Definition (Language in first-order logic)**.** A *language* in first-order logic is specified by two disjoint sets Ω (the *set of operation symbols*) and Π (the *set of predicates*) together with an arity function $\alpha : \Omega \cup \Pi \to \mathbb{N}_0 = \{0\} \cup \mathbb{N}$.

The language $L = L(\Omega, \Pi, \alpha)$ consists of the following:

Variables: Countably infinite sets disjoint from Ω and Π . We denote variables as x_1, x_2, x_3, \ldots (or x, y, z, \ldots).

Terms: Defined inductively:

- (i) Every variable is a term
- (ii) If $\omega \in \Omega$, $n = \alpha(\omega)$ and t_1, \ldots, t_n terms, then $\omega t_1 \ldots t_n$ is a term (could write $\omega(t_1,\ldots,t_n)$).

Example. The language of groups consists of $\Omega = \{m, i, e\}$, $\Pi = \emptyset$, $\alpha(m) = z$, $\alpha(i) = 1, \alpha(e) = 0.$ Some terms:

$$
m\underbrace{x}_{t_1}\underbrace{myz}_{t_2}, \quad mmxyz, \quad mxix, \quad e.
$$

Note. Every operation symbol of [arity](#page-41-0) 0 is a term, called a *constant*.

Definition (Atomic formula)**.** There are two types of *atomic formula*:

- (i) If s, t are [terms,](#page-42-3) then $(s = t)$ is an atomic formula.
- (ii) If $\varphi \in \Pi$ with $\alpha(\varphi) = n$ and t_1, \ldots, t_n are [terms,](#page-42-3) then $\varphi t_1 t_2 \ldots t_n$ is an atomic formula.

Example. The language of [partially ordered sets](#page-28-1) consists of $\Omega = \emptyset$, $\Pi = \{\leq\},\$ $\alpha(\leq)=2$. Some [atomic formulae:](#page-42-4)

$$
x = y, \qquad x \le y \ \text{(officially } \le xy)
$$

Definition (Formula)**.** We define *formulae* inductively:

- (i) [atomic formulae](#page-42-4) are formulae.
- (ii) \perp is a formula.
- (iii) If p, q are formulae, then so is $(p \Rightarrow q)$.
- (iv) If p is a formula and the [variable](#page-42-5) x has a *free occurrence* in p, then $(\forall x)p$ is a formula.

Note. A [formula](#page-43-0) is a finite string of symbols from the set of [variables,](#page-42-5) Ω , Π and $\{ (,), \Rightarrow , \bot, =, \forall \}.$

Start of

[lecture 12](https://notes.ggim.me/LST#lecturelink.12) **Notation.** We also introduce the symbols \land , \lor , \neg and \top as in [Section 1,](#page-2-4) and we also introduce the new symbol $(\exists x)p$ for $\neg(\forall x)\neg p$.

> **Definition**(Free occurence). An occurence of a [variable](#page-42-5) x in a [formula](#page-43-0) p is always *free* except if $p = (\forall x)q$, in which case the $\forall x$ quantifier *binds* every free occurence of x, and then such occurences of x are called *bound* occurences (the formal definition is by induction in L). Note that since the symbol \exists implicitly uses a \forall , this symbol can also bind free occurences ofa [variable.](#page-42-5)

Example. In the language of groups:

$$
(\exists x)(mxx = y) \Rightarrow (\forall z) \neg (mmzzz = y)
$$

Here the occurences of x and z are [bound,](#page-43-5) while the occurences of y are [free.](#page-43-6)

$$
(\forall x)(\forall y)(\forall z)(mmxyz = mxmyz)
$$

has no free [variables.](#page-42-5)

$$
(\exists x)(mxx = y) \Rightarrow (\forall y)(\forall x)(myz = mzy)
$$

Technically the above is a correct [formula,](#page-43-0)where y occurs both as a [free](#page-43-6) [variable](#page-42-5) anda [bound](#page-43-5) [variable,](#page-42-5) but in practise we avoid this.

In the language of [partially ordered sets:](#page-28-1)

$$
(\forall x)(\forall y)(((x \le y) \land (y \le x)) \Rightarrow (x = y))
$$

has no [free](#page-43-6) [variables.](#page-42-5)

Definition (Sentence)**.** A *sentence* isa [formula](#page-43-0) with no free [variables.](#page-42-5)

Definition (Free [variable](#page-42-5)s).A variable x in a [formula](#page-43-0) is *free* if it has a [free](#page-43-6) occurence in p. Let $FV(p)$ $FV(p)$ denote the set of free [variables](#page-42-5) in p.

Definition(L-structure). Let $L = L(\Omega, \Pi, \alpha)$ be a [first-order folang.](#page-42-0) A *structure* in L (or L-structure) is a non-empty set A together with a function $\omega_A : A^n \to A$ for every $\omega \in \Omega$ where $n = \alpha(\omega)$ and subsets $\varphi_A \subset A^n$ for every $\varphi \in \Pi$ where $n = \alpha(\varphi)$ (or equivalently $\varphi_A : A^n \to \{0,1\}$ by identifying a set with its indicator function).

Example.In language of groups: a [structure](#page-44-1) is a non-empty set A with functions $m_A: A^2 \to A$, $i_A: A \to A$, $e_A \in A$ (A^0 is the singleton set). (An operation symbol with [arity](#page-41-0) 0 is called a *constant*). This is not a group yet!

In the language of [partially ordered sets:](#page-28-1) a structure is a non-empty set A with $\leq_A \subset A^2$ $\leq_A \subset A^2$ $\leq_A \subset A^2$, i.e. a relation on A. This is not yet a [partially ordered set.](#page-28-1)

Next step: to define for a formula p what it means that " p is satisfied in A ".

Example. $p = (\forall x)(m\vec{x}) = e$ in language of [partially ordered sets.](#page-28-1) p satisfied in a structure A should mean that for all $a \in A$ we have $m_A(a, i_A(a)) = e_A$.

Hereis the formal definitoion in a [language](#page-42-0) $L = L(\Omega, \Pi, \alpha)$:

Definition (Interpretation of a [term](#page-42-3)). Let A be an L [-structure.](#page-44-2) A term t in L with $FV(t) \subset \{x_1, \ldots, x_n\}$ $FV(t) \subset \{x_1, \ldots, x_n\}$ has *interpretation* $t_A : A^n \to A$ defined as follows:

- If $t = x_i, 1 \le i \le n$, then $t_A(a_1, ..., a_n) = a_i$.
- If $t = \omega t_1 \cdots t_m$ ($\omega \in \Omega$, $m = \alpha(\omega)$, t_1, \ldots, t_m [terms\)](#page-42-3), then

$$
t_A(a_1,\ldots,a_n)=\omega_A((t_1)_A(a_1,\ldots,a_n),\ldots,(t_m)_A(a_1,\ldots,a_n))
$$

Example. In groups,

$$
t = m \underbrace{x_1 \, m x_2 x_3}
$$

 \sim

has interpretation

$$
t_A(a_1, a_2, a_3) = m_A(a_1, m_A(a_2, a_3)).
$$

Definition(Interpretation of a [formula](#page-43-0)). We interpret a formula p with [FV\(](#page-44-0)p) ⊂ $\{x_1, \ldots, x_n\}$ as a subset $p_A \subset A^n$ (or equivalently as a function $p_A : A^n \to \{01\}$).

• If $p = (s = t)$, then

$$
p_A(a_1,\ldots,a_n)=1 \iff s_A(a_1,\ldots,a_n)=t_A(a_1,\ldots,a_n)
$$

• If $p = \varphi t_1 \cdots t_m$ ($\varphi \in \Pi$, $m = \alpha(\varphi)$, t_1, \ldots, t_m [terms\)](#page-42-3), then $p_A(a_1, \ldots, a_n) = 1 \iff \varphi_A((t_1)_A(a_1, \ldots, a_n), \ldots, (t_m)_A(a_1, \ldots, a_n)) = 1$

- \perp A is the constant 0 function.
- $p = (q \implies r)$: $p_A(a_1, \ldots, a_n) = 0 \iff q_A(a_1, \ldots, a_n) = 1 \text{ and } r_A(x_1, \ldots, a_n) = 0$
- $p = (\forall x_{n+1})q$ where $\text{FV}(q) \subset \{x_1, \ldots, x_{n+1}\}$: $p_A = \{(a_1, \ldots, a_n) \in A^n \mid (a_1, \ldots, a_n, a_{n+1}) \in q_A \text{ for all } a_{n+1} \in A\}$

Example. In groups, if $p = (mmxyz = mxmyz)$ has [interpretation](#page-46-0)

$$
p_A = \{(a, b, c) \in A^3 \mid m_A(m_A(a, b), c) = m_A(a, m_A(b, c))\}.
$$

The formula $q = (\forall x)(\forall y)(\forall z)p$ has [interpretation](#page-46-0) $q_A = 1$ if and only if $p_A = A^3$.

Definition (Satisfied formula)**.** A [formula](#page-43-0) p ina [language](#page-42-0) L is *satisfied* in an L[-structure](#page-44-2) A if $p_A = A^n$ (*n* is the number of [free](#page-44-3) variables in *p*), or equivalently p^A is the constant 1 function. We also say p *holds in* A or p *is true in* A or A *is a model for* p.

Definition (Theory)**.** A *theory* ina [language](#page-42-0) L is a set of [sentences](#page-44-4) in L.

Definition(Model-defn). A *model* for a [theory](#page-46-1) T is an L [-structure](#page-44-2) A that is a [model](#page-46-2) for all $p \in T$.

Examples

(1) Theory of groups: the [language](#page-42-0) is specified by $\Omega = \{m, i, e\}$ (with arities 2,1,0) respectively) and $\Pi = \emptyset$. The [theory](#page-46-1) is

$$
T = \{ (\forall x)(\forall y)(\forall z)(mmxyz = mxmyz),
$$

$$
(\forall x)((mxe = x) \land (mx = x)),
$$

$$
(\forall x)((mxix = e) \land (mixx = e)) \}
$$

Then [models](#page-46-3) for T are precisely groups. So we can axiomatise groups as a first-order [theory.](#page-46-1)

(2) [Partially ordered sets](#page-28-1) $\Omega = \emptyset$, $\Pi = \{\leq\}$ (with arity 2).

$$
T = \{ (\forall x)(x \le x),
$$

\n
$$
(\forall x)(\forall y)(((x \le y) \land (y \le x)) \Rightarrow (x = y),
$$

\n
$$
(\forall x)(\forall y)(\forall z)(((x \le y) \land (y \le z)) \Rightarrow (x \le z)) \}
$$

Then [models](#page-46-3) are precisely [partially ordered sets.](#page-28-1)

Start of

[lecture 13](https://notes.ggim.me/LST#lecturelink.13) (3) [Theory](#page-46-1) of [rings](https://notes.ggim.me/GRM) with 1: [Language:](#page-42-0)

$$
\Omega = \{+, 0, -, \times, 1\}, \quad \Pi = \emptyset,
$$

with [arities](#page-41-0) $2, 0, 1, 2, 0$. [Theory:](#page-46-1)

$$
(\forall x)(\forall y)(\forall z)((x + y + z = x + (y + z))\n(\forall x)(x + 0 = x \land 0 + x = x)\n(\forall x)((x + (-x) = 0) \land ((-x) + x = 0))\n(\forall x)(\forall y)(x + y = y + x)\n(\forall x)(\forall y)(\forall z)((x \times y) \times z = x \times (y \times z))\n(\forall x)(1 \times x \land x \times 1 = x)\n(\forall x)(\forall y)(\forall z)((x \times (y + z) = x \times y + x \times z) \land ((x + y) \times z = x \times z + y \times z))
$$

The [models](#page-46-3) are exactly rings with 1.

(4) Fields: [Language:](#page-42-0) same as for rings with 1. [Theory:](#page-46-1) same as for rings with 1, plus the additional [sentences:](#page-44-4)

$$
(\forall x)(\forall y)(x \times y = y \times x)
$$

\n
$$
\neg(0 = 1)
$$

\n
$$
(\forall x)(\neg(x = 0) \Rightarrow (\exists y)(xy = 1))
$$

The [models](#page-46-3) are exactly fields.

(5) [Graph theory:](https://notes.ggim.me/GT) [Language:](#page-42-0)

$$
\Omega = \emptyset, \quad \Pi = \{a\}
$$

with [arity](#page-41-0) $2(a$ will mean "is adjacent to"). [Theory:](#page-46-1)

$$
(\forall x) \neg (a(x, x))
$$

$$
(\forall x)(\forall y)(a(x, y) \Rightarrow a(y, x))
$$

The [models](#page-46-3) are exactly graphs.

(6) Propositional theories: [Language:](#page-42-0)

$$
\Omega = \emptyset, \quad \Pi = \text{some set}
$$

with $\alpha(p) = 0 \,\forall p \in \Pi$. A [structure](#page-44-1) is a non-empty set A together with $p_A \subset A^0$ for all $p \in \Pi$ (equivalently $p_A : A^0 \to \{0,1\}$, equivalently $p_A \in \{0,1\}$, since A^0 is a set ofsize 1). A [structure](#page-44-1) is a non-empty set A together with a function $v : \Pi \to \{0, 1\}$. Every $p \in \Pi$ is an [atomic formula.](#page-42-4) [Formulae](#page-43-0) without [variables](#page-42-5) are precisely elements of $L(\Pi)$ $L(\Pi)$ as defined in [Section 1,](#page-2-4) i.e. they are [propositions](#page-2-3) in Π .

[Interpreting](#page-46-0)these in a [structure](#page-44-1) A is just a function $v : L(\Pi) \to \{0,1\}$ $v : L(\Pi) \to \{0,1\}$ $v : L(\Pi) \to \{0,1\}$ obtained from $v : \Pi \to \{0, 1\}$ as in [Section 1,](#page-2-4) i.e. a [valuation.](#page-3-4) A *propositional theory* is a set S of [formulae](#page-43-0) not using [variables.](#page-42-5) A [model](#page-46-3) for S is a non-empty set A with a [valuation](#page-3-4) $v : L(\Pi) \to \{0,1\}$ $v : L(\Pi) \to \{0,1\}$ $v : L(\Pi) \to \{0,1\}$ such that $v(s) = 1 \,\forall s \in S$ $v(s) = 1 \,\forall s \in S$ (here A is irrelevant).

Definition (Semantic entailment of [sentences](#page-44-4)). For a set S of sentences and a [sentence](#page-44-4)t (in a [first-order language](#page-42-0) L), we say S *(semantically) entails* t if t is satisfied in every [model](#page-46-3) of S. In this case we write $S \models t$.

Example.

Let S be the [theory](#page-46-1) of groups (in the [language](#page-42-0) of groups). Then

$$
S \models ((\forall x)(x \cdot x = e) \Rightarrow (\forall x)(\forall y)(xy = yx))
$$

Let S be the [theory](#page-46-1) of fields (in the [language](#page-42-0) of rings with 1). Then

 $S \models ((\forall x)(\neg(x = 0) \Rightarrow (\forall y)(\forall z)((xy = 1 \land xz = 1) \Rightarrow (y = z)))$ $S \models ((\forall x)(\neg(x = 0) \Rightarrow (\forall y)(\forall z)((xy = 1 \land xz = 1) \Rightarrow (y = z)))$ $S \models ((\forall x)(\neg(x = 0) \Rightarrow (\forall y)(\forall z)((xy = 1 \land xz = 1) \Rightarrow (y = z)))$

Next, we want to define $S \models t$ for [formulae.](#page-43-0)

Example. Let T be the [theory](#page-46-1) of fields (in the [language](#page-42-0) of rings with 1). Let $S = T \cup \{\neg(x = 0)\}, t = (\exists y)(xy = 1)$ $S = T \cup \{\neg(x = 0)\}, t = (\exists y)(xy = 1)$ $S = T \cup \{\neg(x = 0)\}, t = (\exists y)(xy = 1)$. Does $S \models t$? Yes.

Suppose F is a [structure](#page-44-1) in which all members of S are true. So F is a field and for $u = \wedge (x = 0),$

$$
u_F = \{ a \in F \mid a \neq 0_f \} = F,
$$

contradiction. Also, we'll soon define " $S \vdash t$ ", then $S \vdash t$ if and only if $T \vdash \neg(x =$ $0) \Rightarrow (\exists y)(xy = 1).$

Definition (Semantic entailment of formulae)**.** Let S be a set of [formulae](#page-43-0) and t be a [formula](#page-43-0)in a [language](#page-42-0) L. For every [variable](#page-42-5) that occurs [free](#page-44-3) in $S \cup \{t\}$, introduce aconstant c_x (add it to Ω). Let L' be our new [language.](#page-42-0) For a [formula](#page-43-0) p, let p' be the [formula](#page-43-0) obtained from p by replacing [free](#page-44-3) occurences of x in p by c_x , for every x. Let $S' = \{s' \mid s \in S\}$. Say S *(semantically) entails t*, written $S \models t$, if $S' \models t'$.

Notation (Substitutions). If x occurs [free](#page-44-3)in a [formula](#page-43-0) p and t is a [term](#page-42-3) that contains no [variable](#page-42-5) that occurs [bound](#page-43-5) in p, we let $p[t/x]$ be the [formula](#page-43-0) obtained from p by replacing [free](#page-43-6) occurences of x in p by t .

Syntactic entailment

Definition (Axioms of first-order logic)**.**

- (A1) $p \Rightarrow (q \Rightarrow p)$ $(p, q \text{ are formulae}).$
- (A2) $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$ $(p, q, r$ any [formulae\)](#page-43-0).
- (A3) $\neg\neg p \Rightarrow p$ (p any [formula\)](#page-43-0).
- (A4) $(\forall x)(x = x)$.
- (A5) $(\forall x)(\forall y)((x = y) \Rightarrow (p \Rightarrow p[y/x])) (x, y \text{ distinct variables}, p \text{ a formula}, x \in$ $(\forall x)(\forall y)((x = y) \Rightarrow (p \Rightarrow p[y/x])) (x, y \text{ distinct variables}, p \text{ a formula}, x \in$ $(\forall x)(\forall y)((x = y) \Rightarrow (p \Rightarrow p[y/x])) (x, y \text{ distinct variables}, p \text{ a formula}, x \in$ $FV(p)$ $FV(p)$, y does not occur [bound](#page-43-5) in p).
- (A6) $(\forall x)p \Rightarrow p[t/x]$ $(\forall x)p \Rightarrow p[t/x]$ $(\forall x)p \Rightarrow p[t/x]$ (p [formula](#page-43-0) $x \in FV(p)$ $x \in FV(p)$ $x \in FV(p)$, t a [term,](#page-42-3) no variable in t occurs [bound](#page-43-5) in p).
- (A7) $(\forall x)(p \Rightarrow q) \Rightarrow (p \Rightarrow (\forall x)q)$ $(p, q \text{ formulae}, x \notin FV(p), x \in FV(q)).$ $(p, q \text{ formulae}, x \notin FV(p), x \in FV(q)).$ $(p, q \text{ formulae}, x \notin FV(p), x \in FV(q)).$

Note.Every axiom is a [tautology](#page-4-1) (t is a tautology if $\emptyset = t$, i.e. t holds in every [structure\)](#page-44-1).

Rules of deduction

Modus ponens (MP) From p and $p \Rightarrow q$, can deduce q.

Generalisation (Gen) From p such that $x \in FV(p)$ $x \in FV(p)$ $x \in FV(p)$, can deduce $(\forall x)p$ provided x did not occur [free](#page-43-6) in any of the premises used in the proof of p .

Start of

[lecture 14](https://notes.ggim.me/LST#lecturelink.14)

Definition(Proof (in first-order logic))**.** Let S be a set of [formulae,](#page-43-0) and p a [formula.](#page-43-0) A *proof of* p from S is a finite sequence t_1, \ldots, t_n of [formulae](#page-43-0) such that $t_n = p$ and for every i , we have one of:

- • $t_i \in S$ or t_i is an axiom.
- $\exists j, k < i$ with $t_k = (t_i \Rightarrow t_i)$.
- $\exists j < i$ with $t_i = (\forall x)t_j, x \in \text{FV}(t_j)$ and for all $k < j$ if $t_k \in S$ then x does not occur [free](#page-43-6) in t_k .

In this case we say S *proves* p and write $S \vdash p$.

(If S isa [theory](#page-46-1) and p isa [sentence](#page-44-4) then we say p *is a theorem of* S).

Remark. Suppose we allow \emptyset as a structure. Note that $(\forall x) \neg (x = x)$ is satisfied in Ø, whereas \perp is not. So $\{(\forall x)\neg(x=x)\}\not\models\perp$. However, $\{(\forall x)\neg(x=x)\}\vdash$:

Example. $\{x = y\} \vdash (y = x)$. $(\forall x)(\forall y)((x = y) \Rightarrow ((x = z) \Rightarrow (y = z))$ (A5) $(x = y) \Rightarrow ((x = z) \Rightarrow (y = z))$ ((A6 + [MP\)](#page-5-1) twice) $x = y$ (premise) $(x = z) \Rightarrow (y = z)$ [\(MP\)](#page-5-1) $(\forall z)((x = z) \Rightarrow (y = z))$ (Gen) $((\forall z)((x = z) \Rightarrow (y = z))) \Rightarrow ((x = x) \Rightarrow (y = z))$ (A6) $(x = x) \Rightarrow (y = x)$ [\(MP\)](#page-5-1) $(\forall x)(x = x)$ (A4) $(x = x)$ $(x = x)$ $(x = x)$ (A6 + [MP\)](#page-5-1) $(y = x)$ [\(MP\)](#page-5-1)

Proposition 1 (Deduction Theorem). Let S be a set of [formulae](#page-43-0) and p, q be [for](#page-43-0)[mulae.](#page-43-0) Then $S \vdash (p \Rightarrow q)$ if and only if $S \cup \{p\} \vdash q$.

Proof.

 \Rightarrow Write down a [proof](#page-51-1) of $p \Rightarrow q$ from S and add the lines:

toget a [proof](#page-51-1) of q from $S \cup \{p\}.$

 \Leftarrow Let $t_1, \ldots, t_n = q$ be a proof of q from $S \cup \{p\}$. We proe $S \vdash (p \Rightarrow t_i)$ by induction on i.

Our induction hypothesis at step i will be: for $j < i$, $S \vdash (p \Rightarrow t_j)$ such that if the [proof](#page-51-1)of t_j from $S \cup \{p\}$ did not use any premise in which a [variable](#page-42-5) x occurs [free,](#page-43-6) then the [proof](#page-51-1)of $(p \Rightarrow t_i)$ from S does not use any premise in which a [variable](#page-42-5) x occurs [free.](#page-43-6)

To see $S \vdash (p \Rightarrow t_i)$, we consider cases:

• If $t_i \in S$ or t_i an axiom, write

 t_i (premise or axiom) $t_i \Rightarrow (p \Rightarrow t_i)$ (A1) $p \Rightarrow t_i$ [\(MP\)](#page-5-1)

isa [proof](#page-51-1) of $(p \Rightarrow t_i)$ from S.

- If $t_i = p$, then write down a proof of $p \Rightarrow p$ from \emptyset .
- If $\exists j, k < i$ with $t_k = (t_i \Rightarrow t_i)$ then write

 $(p \Rightarrow (t_j \Rightarrow t_i)) \Rightarrow ((p \Rightarrow t_j) \Rightarrow (p \Rightarrow t_i))$ (A2) $p \Rightarrow (t_i \Rightarrow t_i)$ (by induction hypothesis) $(p \Rightarrow t_i) \Rightarrow (p \Rightarrow t_i)$ [\(MP\)](#page-5-1) $p \Rightarrow t_i$ (by induction hypothesis) $p \Rightarrow t_i$ [\(MP\)](#page-5-1)

• Finally, if $\exists j \leq i$ such that $x \in \mathrm{FV}(t_i)$ and $t_i = (\forall x)t_i$, then the [proof](#page-51-1) of t_i from $S \cup \{p\}$ did not use any premise in which x occurs [free.](#page-43-6)

If x occurs [free](#page-43-6) in p, then p did not occur in proof of t_j from $S \cup \{p\}$, i.e. it is a proof of t_j from S. By (Gen), $S \vdash (\forall x) t_j$, i.e. $S \vdash (\forall x) t_j$, i.e. $S \vdash t_i$. Add the lines

$$
t_i \Rightarrow (p \Rightarrow t_i)
$$
 (A1)

$$
p \Rightarrow t_i
$$
 (MP)

If x does not occur [free](#page-43-6)in p, then we have a [proof](#page-51-1) of $p \Rightarrow t_j$ from S by induction hypothesis, which does not use any premise in which x occurs [free.](#page-43-6) So we can add:

$$
(\forall x)(p \Rightarrow t_j)
$$

\n
$$
((\forall x)(p \Rightarrow t_j)) \Rightarrow (p \Rightarrow (\forall x)t_j)
$$

\n
$$
\underbrace{p \Rightarrow (\forall x)t_j}_{=p \Rightarrow t_i}
$$

\n
$$
(AP)
$$

In all cases the condition about [free](#page-43-6) [variables](#page-42-5) remains true.

Aim: $S \vdash p$ if and only if $S \models p$.

Proposition2 (Soundness Theorem). Let S be a set of [formulae](#page-43-0) and p be a [formula.](#page-43-0) If $S \vdash p$ then $S \models p$.

Proof (non-examinable). Write down a proof t_1, \ldots, t_n of p from S. Verify thet $S \models t_i$ by an easy induction. \Box

Theorem 3 (Model Existence Lemma)**.** Let S bea [consistent](#page-7-1) [theory](#page-46-1) in the [language](#page-42-0) $L = L(\Omega, \Pi, \alpha)$ $L = L(\Omega, \Pi, \alpha)$ $L = L(\Omega, \Pi, \alpha)$ (i.e. $S \not\vdash \perp$). Then S has a [model.](#page-46-2)

Assuming this, we have:

Corollary 4 (Adequacy Theorem)**.** Let S be a set of [formulae](#page-43-0) and p bea [formula.](#page-43-0) If $S \models p$, ten $S \models p$.

Proof(non-examinable). Without loss of generality S is a [theory](#page-46-1) and p is a [sentence](#page-44-4) (by using the definition of \models in the case where we have [formulae](#page-43-0) rather than [sentences\)](#page-44-4). Since $S \models p, S \cup {\neg p} \models \perp$. So by [Theorem 3,](#page-7-0) $S \cup {\neg p} \models \perp$. So $S \vdash \neg \neg p$ (by [Proposition 1\)](#page-3-6), so $S \vdash p$ by (A3) and [\(MP\)](#page-5-1). \Box

 \Box

Theorem 5 (Gödel's Completeness Theorem for first-order logic)**.** If S is a set of [formulae](#page-43-0)and p is a [formula,](#page-43-0) then $S \vdash p$ if and only if $S \models p$.

Idea of proof of [Theorem 3:](#page-7-0)We build a [model](#page-46-2) from $L = L(\Omega, \Pi)$. Let A be the set of *closed* [terms](#page-42-3) in L, i.e. [terms](#page-42-3) with no [variables.](#page-42-5) For example $S =$ [theory](#page-46-1) of fields (in [language](#page-42-0) of commutative rings with 1). A consists of

$$
1+1,(((1+0)+0)+1),1\cdot 1,1\cdot 0,\ldots,1+(-1),\ldots
$$

We will define the [interpretation](#page-46-0) of $+$ (and other symbols similarly) using:

 $(1+1) + A (1+0) = (1+1) + (1+0)$

If S is the [theory](#page-46-1) of fields, then A is not a [model:](#page-46-3)

Start of

$$
1 + 1 = (1 + 0) + 1
$$

[lecture 15](https://notes.ggim.me/LST#lecturelink.15) is provable from S , but not satisfied in A :

$$
(1+1)A = 1+1, \qquad ((1+0)+1)A = (1+0)+1.
$$

Easy remedy: define $s \sim t$ on A if and only if $S \vdash (s = t)$, and then replace A with A/\sim . Two issues remain.

Let S be the [theory](#page-46-1) of fields plus the sentence $(1 + 1 = 0 \vee (1 + 1) + 1 = 0)$ (the theory of fields of characteristic 2 or 3). $S \not\vdash 1 + 1 = 0$, so in our new A

$$
1_A + A 1_A = [1] + A [1] = [1 + 1] \neq [0]_A = 0_A.
$$

Similarly

$$
(1_A +_A 1_A) +_A 1_A \neq 0_A.
$$

SoA is not a [model](#page-46-3) of S. Remedy: extend S to a [consistent](#page-7-1) [theory](#page-46-1) $\overline{S} \supset S$ such that for every [sentence](#page-44-4)p, either $\overline{S} \vdash p$ or $\overline{S} \vdash \neg p$. Such a [theory](#page-46-1) is called *complete*.

Now consider S being the [theory](#page-46-1)of fields plus $((\exists x)(xx = 1 + 1))$. A is not a [model](#page-46-3) since there's no [closed](#page-54-0) [term](#page-42-3) t such that

$$
[t] \cdot [t] = [1] +_A [1] = 1_A +_A 1_A
$$

because $S \not\vdash (t - 1 + 1)$. We say S has *witnesses* if for every [sentence](#page-44-4) of the form $(\exists p)$ $(\exists p)$ $(\exists p)$, where $FV(p) = \{x\}$ $FV(p) = \{x\}$, such that $S \vdash (\exists x)p$, there exists a [closed](#page-54-0) [term](#page-42-3) t such that $S \vdash p[t/x]$ $S \vdash p[t/x]$ $S \vdash p[t/x]$.We will enlarge S to a [consistent](#page-7-1) [theory](#page-46-1) \overline{S} such that \overline{S} will have witnesses for S.

Proof of [Theorem 3](#page-7-0) (non-examinable). We start with two observations. Let S be a firstorder [consistent](#page-7-1) [theory](#page-46-1)in a [language](#page-42-0) $L = L(\Omega, \Pi)$. For any [sentence](#page-44-4) p, at least one of $S \cup \{p\}$ or $S \cup \{\neg p\}$ is [consistent.](#page-7-1) Otherwise they both $\vdash \bot$, so by [Deduction Theorem,](#page-3-6) $S \vdash \neg p$ and $S \vdash \neg \neg p$. Hence $S \vdash \bot$ by [MP,](#page-5-1) contradiction. An argument using [Zorn's](#page-7-0) [Lemma](#page-7-0)gives a [consistent](#page-7-1) $\overline{S} \supset S$ such that for every [sentence](#page-44-4) p, either $p \in \overline{S}$ or $\neg p \in \overline{S}$. So \overline{S} is complete.

Now assume S is [consistent](#page-7-1) and $S \vdash (\exists x)p$ for some p with $FV(p) = \{x\}$ $FV(p) = \{x\}$. We add a new constant c to $L(\Omega \to \Omega \cup \{c\})$. Then $S \cup \{p[c/x]\}\$ $S \cup \{p[c/x]\}\$ $S \cup \{p[c/x]\}\$ is [consistent.](#page-7-1) If not, then $S \cup \{p[c/x]\} \vdash \perp$ $S \cup \{p[c/x]\} \vdash \perp$ $S \cup \{p[c/x]\} \vdash \perp$, so $S \vdash \neg p[c/x]$. Since c does not occur in S, we get $S \vdash \neg p$ (put x back in place of c in the [proof\)](#page-51-1). So by (Gen), $S \vdash (\forall x) \neg p$. By assumption $S \vdash \neg (\forall x) \neg p$. So $S \vdash \perp$ $S \vdash \perp$ $S \vdash \perp$ by [MP,](#page-5-1) contradiction. Do this for every [sentence](#page-44-4) $(\exists p)$ that is [provable](#page-51-1) from S to get a new [language](#page-42-0) $\overline{L} = L(\Omega \cup C, \Pi)$ and a [consistent](#page-7-1) [theory](#page-46-1) \overline{S} in \overline{L} such that if p is a [formula](#page-43-0)in L with $FV(p) = \{x\}$ $FV(p) = \{x\}$ and $S \vdash (\exists x)p$, then there exists a [closed](#page-54-0) [term](#page-42-3) t in \overline{L} such that $\overline{S} \vdash p[t/x]$ $\overline{S} \vdash p[t/x]$ $\overline{S} \vdash p[t/x]$.

Nowstart with a [consistent](#page-7-1) [theory](#page-46-1) S in $L = L(\Omega, \Pi)$, we inductively define languages $L_n = (\Omega \cup C_1 \cup \cdots \cup C_n, \Pi)$, each C_k is a new set of constants, and [theories](#page-46-1)

$$
S = S_0 \subset S_1 \subset T_1 \subset S_2 \subset T_2 \subset \cdots
$$

suchthat $\forall n \in \mathbb{N}$, S_n is a complete [consistent](#page-7-1) [theory](#page-46-1) in L_{n-1} and T_n is a consistent [theory](#page-46-1) in L_n which has witnesses for S_n . Let $L^* = \bigcup_n L_n$, $S^* = \bigcup_n S_n$.

It'sstraightforward to check that S^* is a [consistent](#page-7-1) [theory](#page-46-1) in L^* and S^* is complete and has witnesses.

A [model](#page-46-3)for S^* in the [language](#page-42-0) L^* will be a model of S when viewed as a [structure](#page-44-1) in the [language](#page-42-0) L . So without loss of generality, S is [consistent](#page-7-1) in L and has witnesses and is complete.

LetA be the set of equivalence classes of [closed](#page-54-0) [terms](#page-42-3) in L where $s \sim t \iff S \vdash (s = t)$. For $\omega \in \Omega$ with $\alpha(\omega) = n$, define

$$
\omega_A: A^n \to A, \omega_A([t_1], \ldots, [t_n]) = [\omega t_1 \ldots t_n].
$$

For $\varphi \in \Pi$ with $\alpha(\varphi) = n$, define

$$
\varphi_A: A^n \to \{0\}, \varphi_A([t_1], \ldots, [t_n]) = 1 \iff S \vdash \varphi t_1 \ldots t_n.
$$

Aneasy induction shows that for a [closed](#page-54-0) [term](#page-42-3) s, $s_A = [s]$. Next, for a [sentence](#page-44-4) p, $S \vdash p \iff p_A = 1$ (i.e. p holds in A). To prove this, use induction on the [language.](#page-42-0) ThenA is a [model](#page-46-3) of S. \Box

Corollary 6 (Compactness)**.** Let S be a first-order [theory.](#page-46-1) If every finite subset of Shas a [model,](#page-46-3) then S has a [model.](#page-46-3)

Proof. If $S \models \perp$, then $S \vdash \perp$. [Proofs](#page-51-1) are finite, so there exists finite $S' \subset S$ such that $S' \vdash \perp$. Hence $S' \models \perp$, contradiction. \Box

Applications

Canwe axiomatise finite groups? In other words, does there exist a [theory](#page-46-1) T whose [models](#page-46-3) are the finite groups?

For $n \in \mathbb{N}$, let

$$
t_n = (\exists x_1) \cdots (\exists x_n)(\forall x)(x = x_1 \vee x = x_2 \vee \cdots \vee x = x_n).
$$

So t_n means "contains at most n elements". Want

T = [theory](#page-46-1) of groups \cup {t₁ \vee t₂ \vee t₃ $\vee \cdots$ }.

But $t_1 \vee t_2 \vee t_3 \vee \cdots$ is not a [sentence](#page-44-4) (because it is not finite).

Corollary 7. Finite groups are not axiomatisable as a first-order [theory.](#page-46-1)

*Proof.*Assume it is, and let T be such a [theory.](#page-46-1) Consider $T' = T \cup \{\neg t_1, \neg t_2, \neg t_3, \dots\}$ where t_n are defined by

$$
t_n = (\exists x_1) \cdots (\exists x_n)(\forall x)(x = x_1 \vee x = x_2 \vee \cdots \vee x = x_n).
$$

Everyfinite subset of T' has a [model:](#page-46-3) C_N for some large N (cyclic group of order N). ByCorollary $6, T'$ has a [model,](#page-46-3) but this model must be infinite, hence not a finite group. \Box

Corollary 8. If a first-order [theory](#page-46-1) T has arbitrarilty large finite [models,](#page-46-3) then it has infinite [models.](#page-46-3)

Proof. Consider

 $T' = T \cup \{(\exists x_1)(\exists x_2)(x_1 \neq x_2), (\exists x_1)(\exists x_2)(\exists x_3)(x_1 \neq x_2 \land x_2 \land x_3 \land x_1 \neq x_2), \ldots\}.$

Byassumption, every finite subset of T' has a [model,](#page-46-3) so T' has a [model.](#page-46-3) A [model](#page-46-3) of T' is just an infinite [model.](#page-46-3) \Box

Start of

[lecture 16](https://notes.ggim.me/LST#lecturelink.16)

Corollary 9 (Upward Löwenheim-Skolem Theorem)**.** Let S be a first-order [theory.](#page-46-1) If S has an infinite [model,](#page-46-3) then S has an uncountable [model.](#page-46-3)

Proof. We introduce an uncountable set of new constants $\{c_i \mid i \in I\}$ to the language. We let

$$
S' = S \cup \{\neg c_i = c_j \mid i, j \in I, i \neq j\}.
$$

Let A be an infinite [model](#page-46-3) of S . Then A is a model of any finite subset of S' . By [Compactness,](#page-9-0) S' has a [model.](#page-46-3)

A [model](#page-46-3)of S' is a model B of S together with an injection $I \to B$. So B is uncountable. \Box

Remark. For any set X, can take $I = \gamma(X)$ (from [Hartog's Lemma\)](#page-21-1). The proof aboveshows that S has a [model](#page-46-3) B with an injection $I \to B$. So then there will be no injection $B \to X$.

Corollary 10 (Downward Löwenheim-Skolem Theorem)**.** Let S bea [consistent](#page-7-1) first-order [theory](#page-46-1) in a countable [language](#page-42-0) $(\Omega, \Pi$ are countable). Then if S has a [model,](#page-46-3) then S has a countable [model.](#page-46-3)

Proof. Since S is [consistent](#page-7-1) (by [Soundness Theorem\)](#page-6-0), the proof of [Theorem 3](#page-7-0) builds a countable [model](#page-46-3) (since the [language](#page-42-0) is countable). \Box

4.1 Peano Arithmetic

We want to axiomatise $\mathbb N$ as a first-order [theory.](#page-46-1) [Language:](#page-42-0)

$$
\Omega = \{0, s, +, \times\}, \qquad \Pi = \emptyset
$$

with [arities](#page-41-0) $0, 1, 2, 2$. s means "successor", and the others are clear.

Axioms of Peano Arithmetic (PA):

$$
(\forall x)(\neg sx = 0)
$$

\n
$$
(\forall x)(\forall y)(sx = sy \Rightarrow x = y)
$$

\n
$$
(\forall x)(x \times 0 = 0)
$$

\n
$$
(\forall x)(\forall y)(x \times (sy) = (x \times y) + x)
$$

\n
$$
(\forall t_1) \cdots (\forall t_n)[(p[0/x] \land (\forall x)(p \Rightarrow p[sx/x])) \Rightarrow (\forall x)p]
$$

where the last [sentence](#page-44-4) is for every [formula](#page-43-0) p with $FV(p) = \{x, t_1, \ldots, t_n\}$ $FV(p) = \{x, t_1, \ldots, t_n\}$. This is the axiom-scheme for induction.

Remark. Let p be the [formula](#page-43-0) $x + (y + z) = (x + y) + z$. Then you can prove in [PA](#page-57-1) that $(\forall x)(\forall y)(\forall z)p$ by [induction](#page-58-0) on z with x, y parameters. You [prove:](#page-51-1)

 $(\forall x)(\forall y)(p[0/z] \wedge (\forall z)(p \Rightarrow p[sz/z]))$ $(\forall x)(\forall y)(p[0/z] \wedge (\forall z)(p \Rightarrow p[sz/z]))$

Note. $\mathbb{N}_0 = \{0\} \cup \mathbb{N}$ is a [model](#page-46-3) of [PA.](#page-57-1) We can also interpret N as a model of [PA](#page-57-1) by taking a bijection with \mathbb{N}_0 (but this would be rather unnatural to do).

By [Upward Löwenheim-Skolem Theorem,](#page-10-0) there are uncountable [models](#page-46-3) of [PA.](#page-57-1) Didn't we lean \mathbb{N}_0 is uniquely determined by its properties? Yes, but *true* induction says:

 $(\forall A \subset \mathbb{N}_0)((0 \in A \wedge (\forall x)(x \in A \implies sx \in A)) \implies A = \mathbb{N}_0)$ $(\forall A \subset \mathbb{N}_0)((0 \in A \wedge (\forall x)(x \in A \implies sx \in A)) \implies A = \mathbb{N}_0)$ $(\forall A \subset \mathbb{N}_0)((0 \in A \wedge (\forall x)(x \in A \implies sx \in A)) \implies A = \mathbb{N}_0)$

In first-order [theory,](#page-46-1) we cannot quantify over subsets of [structures.](#page-44-1) The axiom scheme for induction captures only countably many subsets of \mathbb{N}_0 .

Definition(Definable set). A subset A of \mathbb{N}_0 is *definable* if there's a [formula](#page-43-0) p in [language](#page-42-0) of [PA](#page-57-1) with [free](#page-44-3) [variable](#page-42-5) x such that $p_{\mathbb{N}_0} = A$, i.e.

 ${a \in \mathbb{N}_0 \mid a \text{ satisfies } p} = A.$

Example. Set of primes: use

$$
p = (\forall y)((\exists z)(y \cdot z = x) \Rightarrow (y = \underbrace{1}_{=s0} \vee y = x)
$$

Powers of 2: use

$$
p = (\forall y) (((y \mid x) \land (y \text{ is a prime})) \Rightarrow y = \underbrace{2}_{=ss0})
$$

A consequence of Gödel's Incompleteness Theorem: there existsa [sentence](#page-44-4) p such that p holds in \mathbb{N}_0 , but [PA](#page-57-1) $\nvdash p$.

5 Set Theory

We will describe set theory as just another example of first-order [theory.](#page-46-1) We want to understand what the "universe of sets" looks like.

Zermelo-Frankel Set Theory (ZF)

[Language:](#page-42-0) $\Omega = \emptyset$, $\Pi = \{\in\}$, \in has [arity](#page-41-0) 2.

A [structure](#page-44-1) is a set V together with $\lbrack \in]_V \subset V \times V$.

An element of V is called a "set". If $a, b \in V$ and $(a, b) \in [\in]V$, we say "a belongs to b" or"a is an element of b ". V will be the "universe of sets" (when V is a [model](#page-46-3) of ZF).

There will be $2 + 4 + 3$ axioms of [ZF.](#page-59-1)

(1) **Axiom of Extensionality (Ext):** "If two sets have the same members, then they are equal".

$$
(\forall x)(\forall y)((\forall z)(z \in x \iff z \in y) \Rightarrow x = y)
$$

(2) **Axiom of Separation (Sep):** "We can form subsets of a set."

$$
(\forall t_1)\cdots(\forall t_n)[(\forall x)(\exists y)(\forall z)(z\in y\iff(z\in x\wedge p))],
$$

where p is any [formula](#page-43-0) with $FV(p) = \{z, t_1, \ldots, t_n\}$ $FV(p) = \{z, t_1, \ldots, t_n\}$. By [\(Ext\),](#page-59-2) the set y whose existence is asserted is unique. We denote it by $\{z \in x \mid p\}$. (Formally, we introduce an $(n + 1)$ -ary operation symbol to the [language;](#page-42-0) informally, this is an abbreviation).

Example. Given t, x , we can form $\{z \in x \mid t \in z\}$.

Start of

[lecture 17](https://notes.ggim.me/LST#lecturelink.17) (3) **Empty set axiom (Emp):**

 $(\exists x)(\forall y)(\neg y \in x)$

By [\(Ext\),](#page-59-2) this set is unique which we denote by \emptyset . Formally, we add a constant \emptyset to the language with the sentence $(\forall y)(\neg y \in \emptyset)$.

(4) **Pair set axiom (Pair):** "We can form unordered pairs".

 $(\forall x)(\forall y)(\exists z)(\forall t)((t \in z) \Rightarrow (t = x \lor t = y)).$

Unique by [\(Ext\).](#page-59-2) We denote this set z by $\{x, y\}$. Define singletons as $\{x, x\}$.

The following an be proved:

$$
(\forall x)(\forall y)(\{x,y\} = \{y,x\}).
$$

We can use [\(Pair\)](#page-60-0) to define ordered pairs: for x, y the ordered pair $(x, y) = \{\{x\}, \{x, y\}\}.$ One can then prove that:

$$
(\forall x)(\forall y)(\forall t)(\forall z)((x, y) = (t, z) \iff (x = t \land y = z)).
$$

We introduce abbreviations:

- "x is an ordered pair" for $(\exists y)(\exists z)(x = (y, z)).$
- " f is a function" for

 $(\forall x)(x \in f \Rightarrow x$ is an ordered pair) $\wedge (\forall x)(\forall y)(\forall z)(((x, y) \in f \wedge (x, z) \in f) \Rightarrow (y = z))$

• " $x = \text{dom } f$ " for

$$
f
$$
 is a function $\wedge (\forall y)(y \in x \iff (\exists z)((yz) \in f))$

• " f is a function from x to y " for

$$
(x = \text{dom } f) \land (\forall t)((\exists z)(z, t) \in f \Rightarrow t \in y)
$$

(5) **Union axiom (Un):**

$$
(\forall x)(\exists y)(\forall z)(z \in y \iff (\exists t)(t \in x \land z \in t)).
$$

Denote this set y by $\bigcup x$.

Example. For $x, y, t \in \{x, y\} \iff (t \in x \lor t \in y)$. We also write $\bigcup \{x, y\} =$ $x \cup y$.

Remark. No new axiom eeded for intersection as this can be formed by [\(Sep\).](#page-59-3) So the following line follows from axioms so far:

$$
(\forall x)(\neg x = \emptyset \Rightarrow (\exists y)(\forall z)(z \in y \iff (\forall t)(t \in x \Rightarrow z \in t)).
$$

Denote the set y by $\bigcap x$. To prove this, given x, form

$$
y = \{ z \in \bigcup x : (\forall t)(t \in x \Rightarrow z \in t) \}
$$

by [\(Sep\).](#page-59-3) Check that

$$
(\forall z)(z \in y \iff (\forall t)(t \in x \Rightarrow z \in t)).
$$

Given x, y , denote $\bigcap \{x, y\}$ by $x \cap y$.

(6) **Power set axiom (Pow):**

$$
(\forall x)(\exists y)(\forall z)(z \in y \iff z \subset x)
$$

where $z \subset x$ is an abbreviation for $(\forall t)(t \in z \Rightarrow t \in x)$. We denote y by $\mathbb{P}x$.

We can now form Cartesian product $x \times y$ for sets x, y: an element of $x \times y$ is an ordered pair (s, t) where $s \in x, t \in y$. Note that

$$
(s,t) = \{\{x\}, \{x,y\}\} \in \mathbb{PP}(x \cup y),
$$

so by [\(Sep\)](#page-59-3) we can form

$$
\{z \in \mathbb{PP}(x \cup y) : (\exists s)(\exists t)(s \in x \land t \in y \land z = (s, t)\}.
$$

We can also form, from sets x, y

$$
y^x = \{ f \in \mathbb{P}(x \times y) : (f : x \to y) \},
$$

which is the set of all functions from x to y .

(7) **Axiom of infinity (Inf):** From axioms so far, any model V will be infinite, for example

∅, P∅, PP∅, . . .

are all distincnt elements of V .

For a set x define the successor of x as $x^+ = x \cup \{x\}$. Then

$$
\emptyset, \emptyset^+, \emptyset^{++}, \ldots
$$

are distinct elements of V :

$$
\emptyset^+ = \{\emptyset\}, \emptyset^{++} = \{\emptyset, \{\emptyset\}\}, \emptyset^{+++} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \ldots
$$

We write $0 = \emptyset$, $1 = \emptyset^+, 2 = \emptyset^{++}, \dots$ We have a copy of \mathbb{N}_0 in V. From the outside, V is infinite. From the inside, V is not a set: $\neg(\exists x)(\forall y)(y \in x)$ (Russell's paradox).

Abbreviate " x is a successor set":

$$
\emptyset \in x \land (\forall y)(y \in x \Rightarrow y^+ \in x).
$$

Axiom (Inf) says:

$$
(\exists x)(x \text{ is a successor set}).
$$

The intersection of successor sets is a successor set. So we can construct "smallest" successor set, i.e. we can prove

 $(\exists x)((x \text{ is a successor set}) \land (\forall y)(y \text{ is a successor set} \Rightarrow x \subset y))$

(Pick any sucessor set z, let $x = \bigcap \{y \in \mathbb{P}z \mid y \text{ is a successor set}\}\.$ x is then a successor set, and if y is any successor set then $x \subset (y \cap z)$.) We denote the smallest successor set by ω .

If $x \subset \omega$ is a successor set then $x = \omega$, i.e.

$$
(\forall x)(((x \subset \omega) \land (\emptyset \in x) \land (\forall y)(y \in x \Rightarrow y^+ \in x)) \Rightarrow x = \omega).
$$

This is true induction.

We can prove by induction:

- $(\forall x)(x \in \omega \Rightarrow \neg x^+ = \emptyset)$
- $(\forall x)(\forall y)(((x \in \omega) \land (y \in \omega) \land (x^+ = y^+) \Rightarrow x = y)).$

We can define abbreviations:

- "x is finite" for $(\exists y)((y \in \omega) \wedge (\exists f)(f : x \rightarrow y \wedge f$ is a bijection)).
- "x is countable" for $(\exists f)(f : x \to \omega \land f$ is injective)

Start of

[lecture 18](https://notes.ggim.me/LST#lecturelink.18)

(8) **Axiom of Replacement (Rep):** [\(Inf\)](#page-61-0) says that there exist sets containing $0, 1, 2, 3, \ldots$ Are there sets containing \emptyset , $\mathbb{P}\emptyset$, $\mathbb{P}\mathbb{P}\emptyset$, ...? There's a function-like object that sends $0 \mapsto \emptyset$, $1 \mapsto \mathbb{P}\emptyset$, $2 \mapsto \mathbb{P}\mathbb{P}\emptyset$,.... Need an axiom that says that the image of a set under a function-like object is a set. The axiom is:

$$
(\forall t_1) \cdots (\forall t_n) \bigg[(\forall x) (\forall y) (\forall z) ((p \land p[z/y]) \Rightarrow y = z)
$$

$$
\Rightarrow (\forall x) (\exists y) (\forall z) (z \in y \iff (\exists u) (u \in x \land p[u/x, z/y])) \bigg]
$$

for any [formula](#page-43-0) p with $FV(p) = \{x, y, t_1, \ldots, t_n\}.$ $FV(p) = \{x, y, t_1, \ldots, t_n\}.$

We will explain the reasoning below, by discussing function-classes.

Digression on classes

Definition(Class). A *class* is a subset C of a [structure](#page-44-1) V of the language of ZF suchthat there is a [formula](#page-43-0) p with $FV(p) = \{x\}$ $FV(p) = \{x\}$ such that $p_V = C$, i.e. $x \in C$ if and only if $p(x)$ holds in V.

Example.*V* is a [class:](#page-63-0) for example take p to be $x = x$. The set of sets of size 1 is a [class:](#page-63-0) for example, take p to be $(\exists y)(x = \{y\})$.

Definition (Proper [class](#page-63-0)). Say the class is a set if $(\exists y)(\forall x)(x \in y \iff p)$ holds in V . If C is not a set, we say C is a *proper class*.

Example.*V* is a [proper](#page-63-1) [class](#page-63-0) (Russell's paradox).

Definition (Function class). A *function-class* is a subset G of $V \times V$ such that there'sa [formula](#page-43-0) p with [free](#page-44-3) [variables](#page-42-5) $FV(p) = \{x, y\}$ $FV(p) = \{x, y\}$ such that

$$
(\forall x)(\forall y)(\forall z)((p \land p[z/y]) \Rightarrow y = z)
$$

holds in V and $G = p_V$, i.e. $(x, y) \in G$ if and only if $p(x, y)$ holds in V.

Example. $G = \{(x, \{x\}) \mid x \in V\}$ is the [function-class](#page-63-2) mapping $x \mapsto \{x\}$, and is given by $p = (y = \{x\})$.

(9) **Axiom of Foundation (Fnd):** We want to avoid pathological behaviour like $x \in \mathcal{x}$, i.e. $\{x\}$ has no \in -minimal member, or $x \in \mathcal{y} \land \mathcal{y} \in \mathcal{x}$ (in which case $\{x, y\}$) has no [∈](#page-59-0)-minimal member). [\(Fnd\)](#page-64-0) says that every non-empty set has an [∈](#page-59-0)-minimal member:

$$
(\forall x)(\neg x = \emptyset \Rightarrow (\exists y)(y \in x \land (\forall z)(z \in x \Rightarrow \neg z \in y)))
$$

The above axioms and axiom-schemes (1)-(9) form [ZF.](#page-59-1) The [axiom of choice](#page-38-0) (AC) is not included:

$$
(\forall x)((\forall y)(y \in x \Rightarrow \neg y = \emptyset) \Rightarrow (\exists f)((f : X \to \bigcup x) \land (\forall y)(y \in x \Rightarrow f(y) \in y))).
$$

We write ZFC for $ZF + AC$. For the rest of this chapter we work within ZF .

Aim: to describe the set-theoretic universe, i.e. any [model](#page-46-3) V of [ZF.](#page-59-1)

Definition (Transitive set). We say a set x is *transitive* if every membet of x is a member of x. So "x is transitive" is shorthand for

$$
(\forall y)((\exists z)(z \in x \land y \in z) \Rightarrow y \in x).
$$

Equivalently, $\bigcup x \subset x$.

Note.This is *not* the same as saying that $∈$ is a [transitive](#page-11-3) relation on x.

Example. ω is [transitive.](#page-64-1) We need to show that $x \subset \omega$ for all $x \in \omega$. Form the set $z = \{y \in \omega \mid y \subset \omega\}$. Check z is a successor set, so $z = \omega$. Similarly,

$$
{x \in \omega \mid "x \text{ is transitive"}}
$$

isa successor set $(\bigcup x^+ = x)$ so it is ω . So every element of ω is a [transitive](#page-64-1) set.

Lemma1. Every set x is contained in a [transitive](#page-64-1) set, i.e.

 $(\forall x)(\exists y)(\exists y)$ is transitive" $\land x \subset y$).

Remark. The intersection of [transitive](#page-64-1)sets if [transitive,](#page-64-1) so x is contained in a smallest [transitive](#page-64-1) set, called the *transitive closure* of x, denoted by $TC(x)$ $TC(x)$.

Idea: If $x \subset y$, y [transitive,](#page-64-1) then $\bigcup x \subset y$ and so $\bigcup \bigcup x \subset y$, $\bigcup \bigcup \bigcup x \subset y$, Want to form

$$
\bigcup \left\{x, \bigcup x, \bigcup \bigcup x, \ldots\right\}
$$

Is this a set? Yes, by [\(Rep\).](#page-63-3)We need a [function-class](#page-63-2) $0 \mapsto x, 1 \mapsto \bigcup x, 2 \mapsto \bigcup \bigcup x, ...$

Proof. Say "*f* is an attempt" to mean:

$$
{}^{w}f \text{ is a function} \land {}^{w}\text{dom } f \in \omega \land {}^{w}\text{A} \cup {}^{w}f(0) = x \lor \neg \text{A} \cup {}^{w}\text{A} \
$$

We prove by ω -induction that:

 $(\forall f)(\forall g)(\forall n)((\forall f \text{ is an attempt"} \land \forall g \text{ is an attempt"} \land (n \in \text{dom } f \cap \text{dom } g)) \Rightarrow (f(n) = g(n)))$ (∗)

and

 $(\forall n)(n \in \omega \Rightarrow (\exists f)(``f \text{ is an attempt" } \land n \in \text{dom } f))$ (**)

 \Box

Definea [function-class](#page-63-2) via the formula $p(y, z)$:

$$
(\exists f)(``f \text{ is an attempt}" \land f(y) = z).
$$

By $(*)$ we do have

$$
(\forall y)(\forall z)(\forall w)((p \land \subset p[w/z]) \Rightarrow w = z).
$$

By [\(Rep\)](#page-63-3) can form $w = \{z \mid (\exists y)(y \in \omega \land p(y, z))\}$ $(w = \{x, \bigcup x, \bigcup \bigcup x, \ldots\})$ and by [\(Un\)](#page-60-1) can form $t = \bigcup w$. Then $x \subset t$, since $x \in w$ ($\{(0, x)\}\$ is an attempt). Given $a \in t$, we have $z \in w$, $a \in z$. There's an attempt f and $n \in w$ such that $z = f(n)$. By $(**)$, there's an attempt g with $n^+ \in \text{dom } g$. Then $n \in \text{dom } g$, so

$$
\bigcup z = \bigcup f(n) \stackrel{(*)}{=} \bigcup g(n) = g(n^+) \in w
$$

hence $a \subset t$.

Start of

[lecture 19](https://notes.ggim.me/LST#lecturelink.19) **Theorem 2** (Principle of \in -induction). For any [formula](#page-43-0) p with $FV(p) = \{x, t_1, \ldots, t_n\}$ $FV(p) = \{x, t_1, \ldots, t_n\}$ we have

$$
(\forall t_1)\cdots(\forall t_n)((\forall x)[(\forall y)(y\in x\Rightarrow p(y))\Rightarrow p(x)]\Rightarrow (\forall x)p(x)).
$$

Proof. Fix t_1, \ldots, t_n and assume

$$
(\forall x) (((\forall y \in x) p(y)) \Rightarrow p(x))
$$

holds. We want to show that $(\forall x)p(x)$ holds. Assume not, so $\neg p(x)$ holds for some x. We'd like to pick an \in -minimal member of $\{y \mid \neg p(y)\}$, but this is not a set. Choose a [transitive](#page-64-1) set t such that $x \in t$. For example can pick $t = \text{TC}(\lbrace x \rbrace)$. By [\(Sep\)](#page-59-3) we can form the set $u = \{y \in t \mid \neg p(y)\}\.$ Note that $x \in u$ so $u \neq \emptyset$. Let z be an \in -minimal membet of u (exists by [\(Fnd\)\)](#page-64-0). If $y \in z$, then $y \in t$ (t is [transitive\)](#page-64-1) and $y \notin u$ (by minimality), so $p(y)$ holds. By assumption $p(z)$ holds, which contradicts $z \in u$. \Box

Remark. In the presence of axioms (1) - (8) of [ZF,](#page-59-1) [\(Fnd\)](#page-64-0) is equivalent to the principle of ∈[-induction.](#page-65-3)

Proof. Assume \in [-induction](#page-65-3) (as well as axioms (1) - (8)). We deduce [\(Fnd\).](#page-64-0) Clever idea: say " x is regular" to mean

 $(\forall y)(x \in y \Rightarrow "y \text{ has } \in \text{-minimal member})$

We prove by \in [-induction](#page-65-3) that $(\forall x)(\forall x$ is regular"). This obviously implies [\(Fnd\).](#page-64-0) Fix a set x and assume that y is regular for all $y \in x$. We want to deduce that x is regular.

Let z be a set such that $x \in \mathcal{Z}$. Then:

- either x is an \in -minimal membet of z
- or there's $y \in z$ such that $y \in x$. By induction hypothesis, y is regular, so z has an ε -minimal member.

 \Box

Next step: \in -recursion. Want to define functions such that $f(x)$ depends on $f(y)$, $y \in x$, i.e. $f(x)$ depends on $f\vert_x$.

Theorem 3 (\in -recursion theorem). For any [function-class](#page-63-2) G (given by a formula p with two [free](#page-44-3) [variables](#page-42-5) such that $(x, y) \in G \iff p(x, y)$ holds) which is defined everywhere(so $(\forall x)(\exists y)p(x, y)$), then there is a [function-class](#page-63-2) F (given by some formula q) defined everywhere such that

$$
(\forall x)(F(x) = G(F|_x)).
$$

Moreover, F is unique.

Note. $F|_x$ is a set by [\(Rep\):](#page-63-3) $F|_x = \{(s, t) | s \in x, t = F(s)\}\$ is the image of the set x under the [function-class](#page-63-2) $s \mapsto (s, F(s))$.

Proof. **Uniqueness:** Assume F_1, F_2 both satisfy the theorem. Then we prove $(\forall x)(F_1(x) =$ $F_2(x)$ by \in [-induction.](#page-65-3) If $F_1(y) = F_2(y) \,\forall y \in x$, then $F_1|_x = F_2|_x$, so $F_1(x) = F_2(x)$.

Existence: Say "*f* is an attempt" to mean

"f is a function" \wedge "dom f is [transitive"](#page-64-1) \wedge $(\forall x \in \text{dom } f)(f(x) = G(f|x)).$

Note that $f|x|$ makes sense as dom f is [transitive.](#page-64-1) We prove by \in [-induction](#page-65-3) that

 $(\forall f)(\forall g)(\forall x)((\forall f \text{ is an attempt"} \land \forall g \text{ is an attempt"} \land (x \in \text{dom } f \cap \text{dom } g)) \Rightarrow (f(x) = g(x)))$

Call this property $(*)$. Then we show by \in [-induction](#page-65-3) that

 $(\forall x)(\exists f)(``f \text{ is an attempt" } \wedge (x \in \text{dom } f)).$

Call this property (**). Fix x. Assume every $y \in x$ is in the domain of some attempt, which is then defined on $TC({y})$ $TC({y})$ and is unique by $(*)$ – call this f_y . Then

$$
f' = \bigcup \{ f_y \mid y \in x \}
$$

is an attempt by (*), and is a set by [\(Rep\).](#page-63-3) Finally $f = f' \cup \{(x, G(f'))\}$ is an attempt defined at x. Note that $f|x = f'$. Let q be the formula:

$$
(\exists f)(``f \text{ is an attempt}" \land (y = f(x))).
$$

Then q defines the required [function-class](#page-63-2) F .

We can generalise induction and recursion to other relations. Let r be a relation (i.e. a [formula](#page-43-0) with two [free](#page-44-3) [variables\)](#page-42-5).

Definition (Well-founded)**.** We say a relation r is *well-founded* if

$$
(\forall x)((\neg x = \emptyset) \Rightarrow (\exists y \in x)((\forall z \in x)(\neg zry)))
$$

(i.e. every non-emptyer set has an r-minimal member).

Example. If r is $(x \in y)$ is the \in -relation, then r is [well-founded](#page-67-0) by [\(Fnd\).](#page-64-0)

 \Box

Definition (Local)**.** We say a relation r is *local* if

$$
(\forall x)(\exists y)(\forall z)(z \in y \iff zrx).
$$

(i.e. the r -predecessors of x form a set).

Example. \in is [local:](#page-68-0) the \in predecessors of x is precisely the set x.

["Local"](#page-68-0) is needed for r -closure. Then we can prove r -induction and r -recursion.

Can restrict r to a class or a set. Note that if r is a relation on a set a, then for any $x \in a$, ${y \in a \mid yrx}$ is a set by [\(Sep\).](#page-59-3) So we only need well-foundedness to have r-induction and r-recursion on a.

Is this really more general than \in ? No, provided we also assume that r is *extensional* on a:

Definition (Extensional)**.** We say a relation r is *extensional* if:

$$
(\forall x, y \in a)((\forall z \in a)((zrx) \iff (zry)) \Rightarrow x = y).
$$

Start of

[lecture 20](https://notes.ggim.me/LST#lecturelink.20) **Theorem 4** (Mostowki's Collapsing Theorem)**.** Let r bea [well-founded,](#page-67-0) [extensional](#page-68-1) relationon a set a. Then there is a [transitive](#page-64-1) b and a bijection $f : a \rightarrow b$ such that

 $(\forall x, y \in a)(xry \iff f(x) \in f(y)).$

Moreover, (b, f) is unique.

*Proof.*By *r*[-recursion](#page-68-2) on *a*, there's a [function-class](#page-63-2) such that

$$
\forall x \in a \quad f(x) = \{ f(y) \mid y \in a \land yrx \}.
$$

Notethat f is a function, not just a [function-class,](#page-63-2) since $\{(x, f(x)) | x \in a\}$ is a set by [\(Rep\).](#page-63-3) Then

$$
b = \{ f(x) \mid x \in a \}
$$

is a set by [\(Rep\).](#page-63-3) Now we check:

• b is [transitive:](#page-64-1) let $z \in b$ and $w \in z$. There's a $x \in a$ such that $z = f(x)$, and so there's $y \in a$ such that yrx and $w = f(y) \in b$.

- f is surjective (true by definition of b).
- $\forall x, y \in a$, $xry \Rightarrow f(x) \in f(y)$ is true by definition of f.
- It remains to show that f is injective. It will then follow that $\forall x, y \in a, f(x) \in$ $f(y) \Rightarrow xry$. Indeed, if $f(x) \in f(y)$, then $f(x) = f(z)$ for some $z \in a$ with zry . Since f is injective, $x = z$, so xry. We will show

$$
(\forall x \in a) \underbrace{(\forall y \in a)(f(x) = f(y) \Rightarrow x = y)}_{``f \text{ is injective at } x"}
$$

by r[-induction.](#page-68-3) Fix $x \in a$ and assume that f is injective at s whenever $s \in a$ and srx. Assume $f(x) = f(y)$ for some $y \in a$, i.e.

$$
\{f(s) \mid s \in \land srx\} = \{f(t) \mid t \in a \land try\}.
$$

Since f is injective at every $s \in a$ with srx , it follows that

$$
\{s \in a \mid srx\} = \{t \in a \mid try\}.
$$

By [extensionality](#page-68-1) for r, it follows that $x = y$.

Now we check that (b, f) is unique. Assume that (b, f) and (b', f') both satisfy the theorem. We prove

$$
(\forall x \in a)(f(x) = f'(x))
$$

by r[-induction.](#page-68-3) Fix $x \in a$ and assume $f(y) = f'(y)$ whenever $y \in a$ and yrx . If $z \in f(x)$, then $z \in b$ (b [transitive\)](#page-64-1), so $z = f(y)$ for some $y \in a$ with yrx. Then $z = f(y) = f'(y)$ (induction hypothesis). Then $z = f'(y) \in f'(x)$. Similarly, if $z \in f'(x)$ thne $z \in f(x)$. By [\(Ext\),](#page-59-2) $f(x) = f'(x)$. \Box

Definition (Ordinal (set theoretic))**.** An *ordinal* isa [transitive](#page-64-1) whichis [well-ordered](#page-12-0) by \in (equivalently, [linearly ordered](#page-11-0) since \in is [well-founded](#page-67-0) by [\(Fnd\)\)](#page-64-0).

Note.Let a be a set and r be a [well-ordering](#page-12-0) on a. Then r is [well-founded](#page-67-0) and [extensional](#page-68-1) (if $x, y \in a$ and $\neg x = y$ then xry or ryx , but not both).

By [Mostowki's Collapsing Theorem,](#page-8-0)there exists a [transitive](#page-64-1) b and a bijection f : $a \to b$ such that $xry \iff f(x) \in f(y)$, i.e. $f(a, r) \to (b, \in)$ is an [order-isomorphism.](#page-12-1) So b is an [ordinal.](#page-69-0)

So by [Mostowki's Collapsing Theorem,](#page-8-0) every [well-ordered](#page-12-0) setis [order-isomorphic](#page-12-2) to a unique [ordinal,](#page-69-0) called the order-type of x .

We let [ON](#page-69-1) denote the [class](#page-63-0) of [ordinals](#page-69-0) (given by the [formula](#page-43-0) " x is an [ordinal"](#page-69-0)). It is a proper [class](#page-63-0) by [Burati-Forti paradox.](#page-20-0)

Proposition 5. Let $\alpha, \beta \in ON$ $\alpha, \beta \in ON$, and let a be a set of [ordinals.](#page-69-0) Then:

- (i) Every member of α is an [ordinal.](#page-69-0)
- (ii) $\beta \in \alpha \iff \beta < \alpha$ (β is [order-isomorphic](#page-12-2) to a proper [initial segment](#page-13-0) of α)
- (iii) $\alpha \in \beta$ or $\alpha = \beta$ or $\beta \in \alpha$
- (iv) $\alpha^+ = \alpha \cup \{\alpha\}$ $\alpha^+ = \alpha \cup \{\alpha\}$ $\alpha^+ = \alpha \cup \{\alpha\}$ (i.e. the set theoretic meaning and ordinal meanings for $^+$ agree).
- (v) $\bigcup a$ is an [ordinal](#page-69-0) and $\bigcup a = \sup a$.

Remark. (ii) says that α really *is* the set of ordinals $\lt \alpha$. (iii) says that \in [linearly](#page-11-0) [orders](#page-11-0) the class [ON](#page-69-1). (iv) resolves the clash of notation x^+ in [Section 2](#page-11-2) and [Section 5.](#page-59-4) (v) now shows that any set of [well-ordered](#page-12-0) sets has an upper bound.

Proof.

- (i) Let $\gamma \in \alpha$. Then $\gamma \subset \alpha$ (since α is [transitive\)](#page-64-1) and hence \in [linearly orders](#page-11-0) γ . Given $\eta \in \delta, \delta \in \gamma$, then $\delta \in \alpha$ and so $\eta \in \alpha$ (α [transitive\)](#page-64-1). Since \in is [transitive](#page-64-1) on α , we have $\eta \in \gamma$. So γ is a [transitive,](#page-64-1) so γ is an [ordinal.](#page-69-0)
- (ii) If $\beta \in \alpha$, then $I_{\beta} = {\gamma \in \alpha \mid \gamma \in \beta} = \beta$, so $\beta < \alpha$. Any proper [initial segment](#page-13-0) of α is of the form I_{γ} for some $\gamma \in \alpha$. So $\beta < \alpha \implies \beta \in \alpha$.
- (iii) We know $\beta < \alpha$ or $\beta = \alpha$ or $\alpha < \beta$ is true. Then done by (ii).
- (iv) Let $\beta = \alpha \cup {\alpha}$ (successor of α). If $\gamma \in \beta$ then either $\gamma = \alpha \subset \beta$ or $\gamma \in \alpha$, so $\gamma \subset \alpha \subset \beta$. Thus β is [transitive,](#page-64-1) [linearly ordered](#page-11-0) by \in (by (iii)) and α is the greatest element. So $\beta = \alpha^+$ $\beta = \alpha^+$ in the sense of [Section 2.](#page-11-2)
- (v) $\bigcup a$ is a union of [transitive](#page-64-1) sets, hence [transitive.](#page-64-1) Every member of $\bigcup a$ is an [ordinal,](#page-69-0) so $\bigcup a$ is [linearly ordered](#page-11-0) by \in by (iii). If $\gamma \in a$, then $\gamma \subset \bigcup a$, so either $\gamma = \bigcup a$, or $\gamma \in \bigcup a$ (by (ii)), i.e. $\gamma \leq \bigcup \alpha$. If $\gamma \leq \delta$ for all $\gamma \in \alpha$, then $\gamma = \delta$ or $\gamma \in \delta$ for $\gamma \in a$, i.e. $\gamma \subset \delta$ (using (ii)). So $\bigcup a \subset \delta$, i.e. $\bigcup a \leq \delta$. \Box

Example. $0 = \emptyset \in ON$ $0 = \emptyset \in ON$, hence $n \in ON$ for all $n \in \omega$ (by ω -induction). ω is [transitive,](#page-64-1) so $\bigcup \omega \subset \omega$. If $n \in \omega$, then $n \in n^+ \in \omega$ $n \in n^+ \in \omega$ $n \in n^+ \in \omega$, so $n \in \bigcup \omega$. So $\omega = \bigcup \omega$ is an [ordinal](#page-69-0) and $\omega = \sup \omega$.

Start of

[lecture 21](https://notes.ggim.me/LST#lecturelink.21)

5.1 Picture of the Universe

Idea: everything is built up from ∅ using P and ∪. Have

$$
V_0 = \emptyset, V_1 = \mathbb{P}\emptyset = \{\emptyset\}, V_2 = \mathbb{P}\mathbb{P}\emptyset = \{\emptyset, \{\emptyset\}\}, \dots
$$

and then will have

$$
V_{\omega} = \bigcup \{V_0, V_1, V_2, \ldots\}, V_{\omega+1} = \mathbb{P} V_{\omega}, \text{etc}
$$

It will be [\(Fnd\)](#page-64-0) that guarantees that every set appears in a V_{α} .

We define sets V_{α} , $\alpha \in \text{ON}$ $\alpha \in \text{ON}$ $\alpha \in \text{ON}$ by \in [-recursion:](#page-66-0)

- $\alpha = 0$: $V_0 = \emptyset$
- $\alpha = \beta^+$ $\alpha = \beta^+$: $V_\alpha = \mathbb{P}V_\beta$
- $\alpha \neq 0$ [limit:](#page-22-0) $V_{\alpha} = \bigcup \{ V_{\gamma} \mid \gamma < \alpha \}$

The sets V_{α} form the *von Neumann hierarchy*.

Aim: Every set appears in this hierarchy.

Lemma 6. V_{α} V_{α} is [transitive](#page-64-1) for all $\alpha \in ON$ $\alpha \in ON$.

Proof. By [induction](#page-14-0) on α .
- • $\alpha = 0$: $V_0 = \emptyset$ $V_0 = \emptyset$ is [transitive.](#page-64-0)
- $\alpha = \beta^+$ $\alpha = \beta^+$: Let $x \in V_\alpha = \mathbb{P}V_\beta$ $x \in V_\alpha = \mathbb{P}V_\beta$ $x \in V_\alpha = \mathbb{P}V_\beta$. Then $x \subset V_\beta$. If $y \in x$, then $y \in V_\beta$, so by [induction](#page-14-0) hypothesis, $y \subset V_\beta$ $y \subset V_\beta$ $y \subset V_\beta$ (V_β is [transitive\)](#page-64-0). So every $y \in x$ has $y \in \mathbb{P}V_\beta = V_\alpha$. Thus V_{α} V_{α} is [transitive.](#page-64-0)
- $\alpha \neq 0$ [limit:](#page-22-0) If $x \in V_\alpha$ $x \in V_\alpha$ $x \in V_\alpha$, then $\exists \gamma < \alpha, x \in V_\gamma$. By induction, V_γ is [transitive,](#page-64-0) so $x \subset V_{\gamma} \subset V_{\alpha}$ $x \subset V_{\gamma} \subset V_{\alpha}$ $x \subset V_{\gamma} \subset V_{\alpha}$. So V_{α} is [transitive](#page-64-0) \Box

Lemma 7. If $\alpha \leq \beta$, then $V_{\alpha} \subset V_{\beta}$ $V_{\alpha} \subset V_{\beta}$.

Proof. By [induction](#page-14-0) on β .

- $\beta = 0$: $\alpha \le \beta$, so $\alpha = 0$, so $V_{\alpha} = V_{\beta}$ $V_{\alpha} = V_{\beta}$.
- $\beta = \gamma^+$ $\beta = \gamma^+$: If $\alpha = \beta$ then $V_{\alpha} = V_{\beta}$ $V_{\alpha} = V_{\beta}$. If $\alpha < \beta$, then $\alpha \leq \gamma$, so by [induction](#page-14-0) hypothesis, $V_{\alpha} \subset V_{\gamma}$ $V_{\alpha} \subset V_{\gamma}$. If $x \in V_{\gamma}$, then $x \subset V_{\gamma}$ $(V_{\gamma}$ is [transitive\)](#page-64-0), so $x \in \mathbb{P}V_{\gamma} \subset V_{\beta}$. Thus $V_{\gamma} \subset V_{\gamma^+} = V_{\beta}$ $V_{\gamma} \subset V_{\gamma^+} = V_{\beta}$ $V_{\gamma} \subset V_{\gamma^+} = V_{\beta}$ $V_{\gamma} \subset V_{\gamma^+} = V_{\beta}$, and hence $V_{\alpha} \subset V_{\beta}$.
- If $\beta \neq 0$ [limit:](#page-22-0) then if $\alpha < \beta$ then $V_{\alpha} \subset V_{\beta}$ $V_{\alpha} \subset V_{\beta}$ by definition.

Theorem 8. The [von Neumann hierarchy](#page-71-1) exhausts the set theoretic universe V , i.e.

$$
(\forall x)(\exists \alpha \in ON)(x \in V_{\alpha})
$$

or

$$
V = \bigcup_{\alpha \in \text{ON}} V_{\alpha}.
$$

Note. If $x \in V_\alpha$ $x \in V_\alpha$ $x \in V_\alpha$ then $x \subset V_\alpha$ (by [Lemma 6\)](#page-9-0). If $x \subset V_\alpha$ then $x \in \mathbb{P}V_\alpha = V_{\alpha+1}$ $x \in \mathbb{P}V_\alpha = V_{\alpha+1}$ $x \in \mathbb{P}V_\alpha = V_{\alpha+1}$.

If $\exists \alpha \in \mathcal{O}N$, $x \subset V_\alpha$ $x \subset V_\alpha$ $x \subset V_\alpha$ then define the *rank of* x to be rank (x) , the least $\alpha \in \mathcal{O}N$ such that $x \subset V_{\alpha}$ $x \subset V_{\alpha}$ $x \subset V_{\alpha}$.

Proof. We will show $(\forall x)(\exists \alpha \in ON)(x \subset V_\alpha)$ by \in [-induction.](#page-65-0) Fix x and assume for each $y \in x$, $y \subset V_\alpha$ $y \subset V_\alpha$ $y \subset V_\alpha$ for some $\alpha \in \text{ON}$ $\alpha \in \text{ON}$ $\alpha \in \text{ON}$, so for all $y \in x$, $y \subset V_{\text{rank}(y)}$. Let

$$
\alpha = \sup\{\text{rank}(y)^+ \mid y \in x\},\
$$

 \Box

which is a set by [\(Rep\).](#page-63-0) We'll show $x \text{ }\subset V_\alpha$ $x \text{ }\subset V_\alpha$ $x \text{ }\subset V_\alpha$. If $y \in x$, then $y \subset V_{\text{rank}(y)}$, so $y \in$ $\mathbb{P}V_{\text{rank}(y)} = V_{\text{rank}(y)} + \mathbb{C} V_{\alpha}$ (where the final \mathbb{C} is using [Lemma 7\)](#page-10-0). This shows $x \in \mathbb{C}$ V_{α} V_{α} . \Box

Corollary 9. For every set x,

$$
rank(x) = sup\{rank(y)^{+} | y \in x\}
$$

Proof.

- \leq : Follows from proof of [Theorem 8.](#page-10-1)
- \geq : We first show that $x \in V_\alpha \implies \text{rank}(x) < \alpha$ $x \in V_\alpha \implies \text{rank}(x) < \alpha$.
	- $\alpha = 0$ is true.
	- $\alpha = \beta^+$ $\alpha = \beta^+$: $x \in \mathbb{P}V_\beta$ $x \in \mathbb{P}V_\beta$ $x \in \mathbb{P}V_\beta$, so $x \subset V_\beta$, so $\operatorname{rank}(x) \leq \beta < \alpha$
	- $\alpha \neq 0$ [limit:](#page-22-0) $x \in V_\alpha \implies \exists \gamma < \alpha$ with $x \in V_\gamma$, so rank $(x) < \gamma < \alpha$ $(x) < \gamma < \alpha$ $(x) < \gamma < \alpha$.

Now let $\alpha = \text{rank}(x)$. Then $x \subset V_\alpha$ $x \subset V_\alpha$ $x \subset V_\alpha$, so for $y \in x$, $y \in V_\alpha$ and so $\text{rank}(y) < \alpha$ $\text{rank}(y) < \alpha$ $\text{rank}(y) < \alpha$. Hence

$$
\sup\{\operatorname{rank}(y)^{+} \mid y \in x\} \le \alpha.
$$

 \Box

Example. rank $(\alpha) = \alpha$ for all $\alpha \in ON$ $\alpha \in ON$. By [induction:](#page-14-0) rank (α) = sup $\{\text{rank}(\beta)^{+} | \beta < \alpha\}$ $\{\text{rank}(\beta)^{+} | \beta < \alpha\}$ $\{\text{rank}(\beta)^{+} | \beta < \alpha\}$ $=\sup\{\beta^+ \mid \beta < \alpha\}$ (induction hypothesis) $=$ α

6 Cardinal Arithmetic

Look at the size of sets. We write $x \cong y$ to mean

$$
(\exists f)(f: x \to y \land ``f \text{ is a bijection").
$$

This is an equivalence relation [class.](#page-63-1) The equivalence classes are proper [classes](#page-63-1) (except $\{\emptyset\}$).

How do we pick a representative from each equivalence class? We seek for each set x , a set [card](#page-74-1) x such that

 $(\forall x)(\forall y)(\text{card } x = \text{card } y \iff x \cong y)$ $(\forall x)(\forall y)(\text{card } x = \text{card } y \iff x \cong y)$ $(\forall x)(\forall y)(\text{card } x = \text{card } y \iff x \cong y)$

In [ZFC](#page-64-1) this is easy: given a set x, x can be [well-ordered,](#page-12-1) so $x \approx \text{OT}(x)$, i.e. $x \approx \alpha$ for some $\alpha \in ON$ $\alpha \in ON$. Can define [card](#page-74-1) x to be the least $\alpha \in ON$ such that $x \cong \alpha$.

In [ZF](#page-59-1) (due to D. S. Scott): define the *essential rank* as follows:

 $\operatorname{ess} \operatorname{rank}(x) = \operatorname{least} \alpha$ $\operatorname{ess} \operatorname{rank}(x) = \operatorname{least} \alpha$ $\operatorname{ess} \operatorname{rank}(x) = \operatorname{least} \alpha$ such that $\exists y \subset V_\alpha$ $\exists y \subset V_\alpha$ $\exists y \subset V_\alpha$ with $y \cong x$.

Note $\operatorname{ess} \operatorname{rank}(x) \leq \operatorname{rank}(x)$. Define

$$
card x = \{ y \subset V_{ess\, rank(x)} \mid y \cong x \}.
$$

Start of

[lecture 22](https://notes.ggim.me/LST#lecturelink.22)

TODO

Start of

[lecture 23](https://notes.ggim.me/LST#lecturelink.23) In [ZFC:](#page-64-1)

Definition (Cardinal sum and product). Given a set I and [cardinals](#page-74-2) m_i , $i \in I$, we define

$$
\sum_{i \in I} m_i = \text{card}\left(\bigsqcup_{i \in I} M_i\right)
$$

(here M_i is a set of [cardinalty](#page-74-3) m_i , $i \in I$, $\bigsqcup_{i \in I} M_i = \bigcup_{i \in I} M_i \times \{i\}$). We also define

$$
\prod_{i\in I} m_i = \text{card}\left(\prod_{i\in I} M_i\right)
$$

 $(\prod_{i\in I} M_i = \{f : I \to \bigcup_{i\in I} M_i \mid f(i) \in M_i \,\forall i \in I\}).$

Need [axiom of choice](#page-38-0) as we need to be able to choose M_i for each $i \in I$ and to prove these operations are well-defined, given $M_i \equiv M'_i$, $i \in I$, we need to choose for each $i \in I$, a bijection $f_i: M_i \to M'_i$, and show $\bigcup_i M_i \equiv \bigsqcup_i M'_i$, $\prod_i M_u \equiv \prod_i M'_i$.

Example. If [card](#page-74-1) $I \leq \aleph_\alpha$, $m_i \leq \aleph_\aleph$ for all $I \in I$, then $\sum_{i \in I} m_i \leq \aleph_\alpha$.

Note. If $n = \text{card } I$ and $m_i = m \ \forall i \in I$, $\prod_{i \in I} m_i = m^n$.

If $\alpha \leq \beta$, then

$$
2^{\aleph_\beta}\leq\aleph_\alpha^{\aleph_\beta}=2^{\aleph_\alpha\aleph_\beta}\leq 2^{\aleph_\beta\aleph_\beta}=2^{\aleph_\beta}.
$$

So we've reduced to studying $2^{\aleph_{\beta}}$. Hard. $\aleph_{\alpha} < 2^{\aleph_{\alpha}}$, so $\aleph_0 < 2^{\aleph_0} = \text{card}(\mathbb{R})$.

Continuum Hypothesis (CH): $2^{\aleph_0} = \aleph_1$.

Paul Cohen proved:if [ZFC](#page-64-1)is [consistent,](#page-7-0) then so are [ZFC](#page-64-1)+ [Continuum Hypothesis](#page-75-0) and $ZFC + \neg$ $ZFC + \neg$ [Continuum Hypothesis.](#page-75-0)

THIS IS THE END OF ALL THE EXAMINABLE MATERIAL FOR THIS COURSE (THE NEXT SECTION IS COMPLETELY NON EXAMINABLE).

7 Classical Descriptive Set Theory (Non-examinable)

Study of "definable sets" in Polish spaces. Borel hierarchy, projective hierarchy.

Aim: [Continuum Hypothesis](#page-75-0) holds for analytic sets.

We show that the analogous statement to $P \neq NP$ holds in this setting.

Definition (Polish space)**.** A topological space X is a *Polish space* if it is separable and complete metrizable.

Example. Baire space $\mathcal{N} = \mathbb{N}^{\mathbb{N}}$. Basic open sets are:

$$
U_{m_1,\dots,m_k} = \{ \mathbf{n} = (n_i)_{i=1}^{\infty} \in \mathcal{N} \mid n_i = m_i, 1 \le i \le k \}.
$$

 $d(\mathbf{m}, \mathbf{n}) = \sum_{k,m_k \neq n_k} 2^{-k}.$

 ${0,1}^{\mathbb{N}} \subset \mathcal{N}$.

Lemma 1. Any Polish space is a continuous image of N .

Proof. Let X be a Polish space with complete metric d. Let $X = \bigcup_{n \in \mathbb{N}} U_n$, U_n non-empty and open, $\text{diam}(U_n) < 1$ (since X separable). Let $U_n = \bigcup_{p \in \mathbb{N}} U_{n,p}, U_{n,p}$ non-empty and open, diam $(U_{n,p}) < \frac{1}{2}$ $rac{1}{2}$.

Continue infinitely, by letting

$$
U_{n_1,\ldots,n_k} = \bigcup_{n_{k+1} \in \mathbb{N}} U_{n_1,\ldots,n_{k+1}}
$$

with $U_{n_1,\dots,n_{k+1}}$ always non-empty and open, and diam $\lt \frac{1}{k+1}$.

Now pick $x_{n_1,\dots,n_k} \in U_{n_1,\dots,n_k}$. Define

$$
\phi : \mathcal{N} \to X
$$

$$
\varphi(\mathbf{n}) = \lim_{k \to \infty} x_{n_1, \dots, n_k} \qquad \Box
$$

Lemma 2. N is homeomorphic to the set of irrationals on [0, 1].

Proof. Continued fractions (for a definition and some properties, see [Number Theory\)](https://notes.ggim.me/NT). \Box

Definition (Borel hierarchy). Let X be a set. A σ -field on X is a subset $\mathcal{F} \subset \mathbb{P}X$ such that

- (i) $\emptyset \in \mathcal{F}$
- (ii) $A_1, A_2, \ldots \in \mathcal{F} \implies \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{F}$
- (iii) $A \in \mathcal{F} \implies X \setminus A \in \mathcal{F}$

If X is a Polish space, then the *Borel* σ -field B on X is the smallest σ -field on X that contains the open sets.

Remark. This is a field under the operations of symmetric difference and intersection, with identity \emptyset (alternatively, it is also a field under the operations of symmetric difference and union, with identity X).

Definition (Σ_1^0, Π_1^0) . We let Σ_1^0 be the set of open subsets of X, and π_1^0 be the set of closed subsets of X. We define Σ_{α}^0 , Π_{α}^1 for $1 \leq \alpha < \omega_1$ b recursion:

- $\Sigma_{\alpha+1}^0$ is the countable unions of members of Π_{α}^0 (for example, Σ_2^0 are the F_{σ} -sets).
- $\Pi_{\alpha+1}^0$ are the complemenets of membets of $\Sigma_{\alpha+1}^0$ (for example, Π_2^0 are the G_{δ} -sets).

For $\alpha \neq 0$ [limit:](#page-22-0)

- Σ^0_α consists of sets of the form $\bigcup_{n\in\mathbb{N}} A_n$, where $\forall n<\omega, \exists \beta<\alpha$ with $A_n\in\Pi^0_\beta$.
- Π^0_α is the complements of members of Σ^0_α .

Definition (Δ_{α}^0) . We define $\Delta_{\alpha}^0 = \Sigma_{\alpha}^0 \cap \Pi_{\alpha}^0$.

We have:

Prove the \subset property by induction, starting with $\Sigma_1^0 \subset \Sigma_2^0$, using the fact that we are a metric space (not just a topological space).

Proposition 3. $\bigcup_{\alpha<\omega_1}\Sigma^0_\alpha=\bigcup_{\alpha<\omega_1}\Pi^0_\alpha=\mathcal{B}$ (the set of Borel sets).

Proof. First notice:

$$
\bigcup_{\alpha<\omega_1}\Sigma_\alpha^0=\bigcup_{\alpha<\omega_1}\Pi_\alpha^0\subset\mathcal{B}.
$$

Need: $\mathcal{F} = \bigcup_{\alpha < \omega_1} \Sigma_{\alpha}^0$ is a σ -field. For example, if $A_n \in \mathcal{F}$, $n \in \mathbb{N}$, then $A_n \in \Pi_{\alpha_n}^0$ for some $\alpha_n < \omega_1$ $\alpha_n < \omega_1$ $\alpha_n < \omega_1$. Let $\alpha = \sup(\alpha_n + 1)$. Then $\bigcup_n A_n \in \Sigma_\alpha^0$ etc.

Definition (Universal subset). A subset $A \subset \mathcal{N} \times \mathcal{N}$ is a *universal* Σ^0_{α} -set if: (i) A is Σ^0_α (ii) If $B \subset \mathcal{N}$ is Σ^0_α then $\exists \mathbf{m} \in \mathcal{N}, B = {\mathbf{n} \in \mathcal{N} \mid (\mathbf{m}, \mathbf{n}) \in A}.$

Theorem 4. $\forall \alpha, 1 \leq \alpha < \omega_1$, there exists a universal Σ^0_α set.

Proof.

 $\alpha = 1$: Can enumerate the basic open set of N as U_1, U_2, U_3, \ldots If $B \subset \mathcal{N}$ is open, then $B=\bigcup_{i\in\mathbb{N}}U_{m_i}$ for some $\mathbf{m}=(m_i)\in\mathcal{N}$. So $\mathbf{n}\in B\iff \exists i\ \mathbf{n}\in U_{m_i}$. So define

$$
A = \{ (\mathbf{m}, \mathbf{n}) \in \mathcal{N} \times \mathcal{N} \mid \exists i \ \mathbf{n} \in U_{m_i} \}.
$$

This is open and universal by above.

 $\alpha > 1$: use induction.

 \Box

Corollary 5. For every α , $1 \leq \alpha < \omega_1$, there exiss a set $A \in \Sigma^0_\alpha \setminus \Pi^0_\alpha$.

Proof. Let $A \subset \mathcal{N} \times \mathcal{N}$ be a universal Σ^0_α set.

$$
B = \{ \mathbf{n} \in \mathcal{N} \mid (\mathbf{n}, \mathbf{n}) \in A \}.
$$

B is Σ^0_α (**n** \mapsto (**n**, **n**) is continuous). If B is Π^0_α then \exists **m** with $B = {\mathbf{n} | (\mathbf{n}, \mathbf{n}) \notin A}$. $m \in B$? contradiction.

Start of

[lecture 24](https://notes.ggim.me/LST#lecturelink.24)

Projective Hierarchy

Definition (Analytic st)**.** An *analytic set* (in a Polish space) is the continuous image of N .

Example. Every Polish space (by [Lemma 1\)](#page-3-1). Every closed subset of Polish space.

Proposition 6. Let $A \subset X$, X Polish. Then the following are equivalent:

- (i) A is analytic.
- (ii) A is a continuous image of a Borel set.
- (iii) A is the projection onto X of some Borel subset of $Y \times X$, Y Polish.
- (iv) A is the projection onto X of some closed subset of $Y \times X$, Y Polish.
- (v) A is the projection onto X of some Borel subset of $\mathcal{N} \times X$.
- (vi) A is the projection onto X of some closed subset of $\mathcal{N} \times X$.

Note. $\mathcal{N} = \mathbb{N}^{\mathbb{N}}, \ \mathcal{N} \times \mathcal{N} = \mathbb{N}^{\mathbb{N} \cup \mathbb{N}}$ homeomorphic to \mathcal{N} , and $\mathcal{N}^{\mathbb{N}} = \mathbb{N}^{\mathbb{N} \times \mathbb{N}}$ is also homeomorphic to N.

Proof. Enough to show (ii) \Rightarrow (I) \Rightarrow (vi).

(i) \Rightarrow (vi) $A = f(\mathcal{N})$, f closed. A is the projection onto X of

$$
\{(\mathbf{n}, f(\mathbf{n})) \mid \mathbf{n} \in \mathcal{N}\}
$$

which is closed.

(ii) \Rightarrow (i) Need: Borel \Rightarrow analytic. Enough: every Borel set satisfies (vi). Π_1^0 is a subset of the sets satisfying (vi). Need that the set of sets satisfying (vi) is closed under countable union and intersection. Assume A_n is the projection of $F_n \subset \mathcal{N} \times X$, F_n closed. So $x \in A_n \iff \exists n \in \mathcal{N}, (n, x) \in$ F_n . Then

$$
x \in \bigcup_n A_n \iff \exists n \in \mathbb{N} \; \exists \mathbf{n} \in \mathcal{N} \; (\mathbf{n}, x) \in F_n.
$$

Let

$$
F = \{(n, \mathbf{n}, x) \in \underbrace{\mathbb{N} \times \mathcal{N}}_{\mathcal{N}} \times X \mid (\mathbf{n}, x \in F_n)\}
$$

which is closed and projects onto $\bigcup_n A_n$.

For intersection: $x \in \bigcap_n A_n$ if and only if $\forall n \exists \mathbf{n}, (\mathbf{n}, x) \in F_n$. Then

$$
G = \{ (\mathbf{n}_1, \mathbf{n}_2, \mathbf{n}_3, \dots, x) \in \mathcal{N}^{\mathbb{N}} \times X \mid (n_i, x) \in F_i \,\,\forall i \}
$$

 \Box

is closed and projects onto $\bigcap_n A_n$.

Definition (Σ_n^1, Π_n^1) . Let Σ_1^1 be the set of analytic sets. Let Π_1^1 be the set of coanalytic sets, i.e. complements of analytic sets. For $1 \leq n \leq \omega$, let Σ_{n+1}^1 be the continuous image of Π_n^1 sets. Let Π_{n+1}^1 be the complements of Σ_{n+1}^1 sets.

As before:

projective hierarchy

$$
P = \bigcup_{1 \le n < \omega} \Sigma_n^1 = \bigcup_{1 \le n < \omega} \Pi_n^1.
$$

Theorem 7. There exists a universal analytic set $A \subset \mathcal{N} \times \mathcal{N}$.

Proof. Let U be a universal open set in $\mathcal{N} \times (\mathcal{N} \times \mathcal{N})$. So if $V \subset \mathcal{N} \times \mathcal{N}$ is open then there exists $\mathbf{p} \in \mathcal{N}$ such that

$$
V = \{ (\mathbf{m}, \mathbf{n}) \in \mathcal{N} \times \mathcal{N} \mid (\mathbf{p}, \mathbf{m}, \mathbf{n}) \in U \}.
$$

Suppose $B \subset \mathcal{N}$ is analytic. So there exists closed $F \subset \mathcal{N} \times \mathcal{N}$ such that

$$
B = \{ \mathbf{n} \in \mathcal{N} \mid \exists \mathbf{m} \in \mathcal{N}, (\mathbf{m}, \mathbf{n}) \in F \}.
$$

So $\exists \mathbf{p} \in \mathbb{N}$ such that

$$
B = \{ \mathbf{n} \in \mathcal{N} \mid \exists \mathbf{m} \in \mathcal{N}, (\mathbf{p}, \mathbf{m}, \mathbf{n}) \notin U \}.
$$

Let

$$
A = \{(\mathbf{r}, \mathbf{s}) \in \mathcal{N} \times \mathcal{N} \mid \exists \mathbf{m} \in \mathcal{N}, (\mathbf{r}, \mathbf{m}, \mathbf{s}) \notin U\}
$$

This is a projection of a closed set, so analytic.

$$
B = \{ \mathbf{n} \in \mathcal{N} \mid (\mathbf{p}, \mathbf{n}) \in A \}.
$$

Corollary 8. There exists an analytic, not coanalytic set in N .

Proof. Let $A \subset \mathcal{N} \times \mathcal{N}$ be a universal analytic set, and $B = \{n \in \mathcal{N} \mid (n, n) \in A\}$ analytic. If B is coanalytic, then

$$
\exists \mathbf{m} \in \mathcal{N} \qquad B = \{ \mathbf{n} \in \mathcal{N} \mid (\mathbf{m}, \mathbf{n}) \notin A \}.
$$

Is $m \in B$? No, contradiction.

Remark. So $B \in \Sigma_1^1 \setminus \Pi_1^1$, so B is not Borel (" $P \neq NP$ ").

Aim: $\Sigma_1^1 \cap \Pi_1^1 = \mathcal{B}$. " \supset " is [Proposition 6.](#page-9-0)

 \Box

Theorem 9 (Lusin's Separation Theorem). If A_1 , A_2 are disjoint analytic sets, then there exists a orel set $B, A_1 \subset B, A_2 \subset X \setminus B$.

Proof. First: if $Y = \bigcup_n Y_n$, $Z = \bigcup_n Z_n$ and $\forall m, n \ Y_m, Z_n$ can be separated by Borel sets, then so can Y, Z. So for all m, n , find $Y_m \subset B_{m,n} \subset X \setminus Z_n$, $B_{m,n}$ Borel. Then

$$
B = \bigcup_{m} \bigcap_{n} B_{m,n}
$$

is Borel, and $Y \subset B \subset X \setminus Z$. Now suppose f, g are continuous and $f(\mathcal{N})$, $g(\mathcal{N})$ are disjoint, but cannot be separated. Recall

$$
U_{m_1, m_2, \dots, m_k} = \{ \mathbf{n} \in \mathcal{N} \mid n_i = m_i, 1 \le i \le k \}
$$

is our notation for the basic open sets in N. $f(\mathcal{N}) = \bigcup_n f(U_n)$, $g(\mathcal{N}) = \bigcup_n g(U_n)$. There exists m_1, n_1 such that $f(U_{m_1}), g(U_{n_1})$ cannot be separated. Inductively, we get $\mathbf{m}, \mathbf{n} \in \mathcal{N}$ such that for all $\mathbf{m}, \mathbf{n} \in \mathcal{N}$, $f(U_{m_1,...,m_k})$, $g(U_{n_1,...,n_k})$ cannot be separated. But $\mathcal N$ is Hausdorff (and in fact we can separate points using the basic open sets U), which gives a contradiction. \Box

Corollary 10. $\Sigma_1^1 \cap \Pi_1^1 = \mathcal{B}$.

Example. Let $\Sigma = \bigcup_{k \in \mathbb{N}_0} \mathbb{N}^k$. $s, t \in \Sigma$, we write $s \prec t$ if $s = (n_1, \ldots, n_j)$, $t =$ $(n_1,\ldots,n_i),\;0\;\leq\;j\;\leq\;i\quad s\;\in\;\Sigma,\;\mathbf{n}\;\in\;\mathcal{N},\;s\;\prec\;\mathbf{n}\;\;\text{if}\;\,s\;=\;(n_1,\ldots,n_j),\;j\;\in\;\mathbb{N}_0.$ $\mathbb{P}\Sigma = \{0,1\}^\Sigma$ Polish space. $T \subset \Sigma$ is a *tree* if $s \prec t, t \in T \implies s \in T$. T is *well-founded* if $\exists n \in \mathcal{N}$ such that $\forall i, (n_1, \ldots, n_i) \in T$.

$$
WFT = \{T \subset \Sigma \mid T \text{ is well-founded}\}\
$$

A subset A of a Polish space is *perfect* if A is closed and contains no isolated points. $(x \in A \text{ is isolated if } \exists r > 0, B_r(x) \cap A = \{x\}.$

Lemma 11. $A \neq \emptyset$ perfect set has cardinality 2^{\aleph_0} .

Closed balls, disjoint, diameter $\langle 1, \text{ centres in } A, \{0,1\}^{\mathbb{N}} \hookrightarrow A, \text{ so } \text{card } A \geq 2^{\aleph_0}$ $\langle 1, \text{ centres in } A, \{0,1\}^{\mathbb{N}} \hookrightarrow A, \text{ so } \text{card } A \geq 2^{\aleph_0}$ $\langle 1, \text{ centres in } A, \{0,1\}^{\mathbb{N}} \hookrightarrow A, \text{ so } \text{card } A \geq 2^{\aleph_0}$. [card](#page-74-1) $A \leq \text{card }\mathcal{N} = \aleph_0^{\aleph_0} = 2^{\aleph_0}.$

Theorem 12. An analytic set is either countable or contains a non-empty perfect set. So [Continuum Hypothesis](#page-75-0) holds for analytic sets.

 $f(\mathcal{N})$. T tree

 $[\Sigma] = \mathcal{N}, s \in \Sigma,$

$$
[T] = \{ \mathbf{n} \in \mathcal{N} \mid (n_1, \dots, n_i) \in T \,\forall i \}.
$$

$$
T(s) = \{ t \in \Sigma \mid t \prec s \text{ or } s \prec t \}.
$$

 $T^{(0)}=\Sigma,$

 $T^{(\alpha+1)} = (T^{(\alpha)})' = \{ s \in T^{(\alpha)} \mid f([T^{(\alpha)}(s)]) \text{ is uncountable} \}.$ $T^{(\lambda)} = \bigcap$ α<λ $T^{(\alpha)}$.

 $\exists \alpha < \omega_1, T^{(\alpha)} = T^{(\alpha+1)}, \ (\Sigma \text{ countable}).$ Either $T^{(\alpha)} = \emptyset$ implies $f(\mathcal{N})$ countable or $T^{(\alpha)} \neq \emptyset$. Find a copy of $\{0,1\}^{\mathbb{N}} \subset [T^{(\alpha)}]$. The image of $\{0,1\}^{\mathbb{N}}$ is perfect.

Index

[Continuum Hypothesis](#page-75-0) [76,](#page-75-1) [77,](#page-76-0) [84](#page-83-0) [\(Emp\)](#page-60-0) [61](#page-60-1) [\(Ext\)](#page-59-2) [60,](#page-59-3) [61,](#page-60-1) [70](#page-69-1) [FV](#page-44-0) [45,](#page-44-1) [46,](#page-45-0) [50,](#page-49-0) [51,](#page-50-0) [53,](#page-52-0) [55,](#page-54-0) [56,](#page-55-0) [58,](#page-57-0) [60,](#page-59-3) [64,](#page-63-2) [66](#page-65-1) [\(Fnd\)](#page-64-2) [64,](#page-63-2) [66,](#page-65-1) [67,](#page-66-0) [68,](#page-67-0) [70,](#page-69-1) [72](#page-71-2) [\(Inf\)](#page-61-0) [62,](#page-61-1) [63](#page-62-0) [I](#page-13-0)^x [14,](#page-13-1) [16,](#page-15-0) [18,](#page-17-0) [20,](#page-19-1) [21,](#page-20-0) [22,](#page-21-1) [23](#page-22-2) L[-structure](#page-44-2) [45,](#page-44-1) [46,](#page-45-0) [47](#page-46-0) [MP](#page-5-0) [6,](#page-5-1) [7,](#page-6-0) [8,](#page-7-1) [9,](#page-8-0) [10,](#page-9-1) [38,](#page-37-0) [52,](#page-51-0) [53,](#page-52-0) [54,](#page-53-0) [55,](#page-54-0) [56](#page-55-0) [ON](#page-69-0) [70,](#page-69-1) [71,](#page-70-0) [72,](#page-71-2) [73,](#page-72-1) [74,](#page-73-0) [75](#page-74-4) [PA](#page-57-1) [58,](#page-57-0) [59](#page-58-0) [\(Pair\)](#page-60-2) [61](#page-60-1) [\(Pow\)](#page-61-2) [62](#page-61-1) [\(Rep\)](#page-63-0) [63,](#page-62-0) [66,](#page-65-1) [67,](#page-66-0) [68,](#page-67-0) [69,](#page-68-0) [73](#page-72-1) [\(Sep\)](#page-59-4) [60,](#page-59-3) [62,](#page-61-1) [66,](#page-65-1) [69](#page-68-0) $TC(x)$ $TC(x)$ [65,](#page-64-3) [66,](#page-65-1) [68](#page-67-0) [\(Un\)](#page-60-3) [61,](#page-60-1) [66](#page-65-1) [ZF](#page-59-1) [60,](#page-59-3) [64,](#page-63-2) [65,](#page-64-3) [67,](#page-66-0) [75](#page-74-4) [ZFC](#page-64-1) [65,](#page-64-3) [75,](#page-74-4) [76](#page-75-1) [antichain](#page-30-0) [31](#page-30-1)

[∧](#page-3-0) [3,](#page-2-0) [4,](#page-3-2) [42,](#page-41-0) [44,](#page-43-2) [47,](#page-46-0) [48,](#page-47-0) [49,](#page-48-0) [57,](#page-56-0) [58,](#page-57-0) [59,](#page-58-0) [60,](#page-59-3) [61,](#page-60-1) [62,](#page-61-1) [63,](#page-62-0) [64,](#page-63-2) [65,](#page-64-3) [66,](#page-65-1) [68,](#page-67-0) [69,](#page-68-0) [70,](#page-69-1) [75](#page-74-4)

[axiom of choice](#page-38-0) [39,](#page-38-1) [40,](#page-39-0) [41,](#page-40-0) [65,](#page-64-3) [75](#page-74-4)

[arity](#page-41-1) [42,](#page-41-0) [43,](#page-42-0) [45,](#page-44-1) [48,](#page-47-0) [49,](#page-48-0) [58,](#page-57-0) [60](#page-59-3)

 α [42,](#page-41-0) [43,](#page-42-0) [45,](#page-44-1) [46,](#page-45-0) [49,](#page-48-0) [54,](#page-53-0) [56](#page-55-0)

[atomic formula](#page-42-2) [43,](#page-42-0) [49](#page-48-0)

[axiom](#page-5-2) [6,](#page-5-1) [8](#page-7-1)

[bound](#page-43-3) [44,](#page-43-2) [50](#page-49-0)

[cardinal](#page-74-2) [75](#page-74-4)

[card](#page-74-1) x [75,](#page-74-4) [76,](#page-75-1) [84](#page-83-0)

[cardinalty](#page-74-3) [75](#page-74-4)

[chain](#page-29-0) [30,](#page-29-1) [36,](#page-35-0) [37,](#page-36-0) [38,](#page-37-0) [39,](#page-38-1) [40,](#page-39-0) [41](#page-40-0)

[closed](#page-54-1) [55,](#page-54-0) [56](#page-55-0)

[class](#page-63-1) [64,](#page-63-2) [70,](#page-69-1) [75](#page-74-4)

[complete](#page-33-0) [33,](#page-32-0) [34,](#page-33-1) [35](#page-34-0)

[consistent](#page-7-0) [8,](#page-7-1) [9,](#page-8-0) [38,](#page-37-0) [54,](#page-53-0) [55,](#page-54-0) [56,](#page-55-0) [58,](#page-57-0) [76](#page-75-1)

∈[-induction](#page-65-0) [66,](#page-65-1) [67,](#page-66-0) [68,](#page-67-0) [73](#page-72-1)

∈[-recursion](#page-66-1) [67,](#page-66-0) [72](#page-71-2)

[extends](#page-18-1) [19](#page-18-2)

[extensional](#page-68-1) [69,](#page-68-0) [70](#page-69-1)

[⊥](#page-2-1) [3,](#page-2-0) [4,](#page-3-2) [5,](#page-4-0) [8,](#page-7-1) [9,](#page-8-0) [10,](#page-9-1) [11,](#page-10-2) [38,](#page-37-0) [42,](#page-41-0) [52,](#page-51-0) [54,](#page-53-0) [55,](#page-54-0) [56](#page-55-0)

[model](#page-46-1) [47,](#page-46-0) [54,](#page-53-0) [55](#page-54-0)

[language](#page-42-3) [42,](#page-41-0) [45,](#page-44-1) [46,](#page-45-0) [47,](#page-46-0) [48,](#page-47-0) [49,](#page-48-0) [50,](#page-49-0) [54,](#page-53-0) [55,](#page-54-0) [56,](#page-55-0) [58,](#page-57-0) [59,](#page-58-0) [60](#page-59-3)

[formula](#page-43-4) [43,](#page-42-0) [44,](#page-43-2) [45,](#page-44-1) [46,](#page-45-0) [47,](#page-46-0) [49,](#page-48-0) [50,](#page-49-0) [51,](#page-50-0) [52,](#page-51-0) [54,](#page-53-0) [56,](#page-55-0) [58,](#page-57-0) [59,](#page-58-0) [60,](#page-59-3) [64,](#page-63-2) [66,](#page-65-1) [68,](#page-67-0) [70](#page-69-1)

[fixed point](#page-33-2) [34,](#page-33-1) [41](#page-40-0)

[proof](#page-51-1) [51,](#page-50-0) [53,](#page-52-0) [54,](#page-53-0) [56,](#page-55-0) [59](#page-58-0)

[free](#page-43-5) [44,](#page-43-2) [45,](#page-44-1) [50,](#page-49-0) [51,](#page-50-0) [53,](#page-52-0) [54](#page-53-0) [free](#page-44-3) [45,](#page-44-1) [47,](#page-46-0) [50,](#page-49-0) [59,](#page-58-0) [64,](#page-63-2) [67,](#page-66-0) [68](#page-67-0) $\models 50, 51, 54$ $\models 50, 51, 54$ $\models 50, 51, 54$ $\models 50, 51, 54$ [function-class](#page-63-3) [64,](#page-63-2) [66,](#page-65-1) [67,](#page-66-0) [68,](#page-67-0) [69](#page-68-0) $\gamma(X)$ $\gamma(X)$ $\gamma(X)$ [22,](#page-21-1) [36,](#page-35-0) [41,](#page-40-0) [58](#page-57-0) [inconsistent](#page-7-0) [8](#page-7-1) [inductive addition](#page-22-3) [23,](#page-22-2) [26](#page-25-0) [induction](#page-14-0) [15,](#page-14-1) [16,](#page-15-0) [24,](#page-23-0) [36,](#page-35-0) [37,](#page-36-0) [41,](#page-40-0) [72,](#page-71-2) [73,](#page-72-1) [74](#page-73-0) [interpretation](#page-45-1) [46](#page-45-0) [interpretation](#page-46-2) [46,](#page-45-0) [47,](#page-46-0) [49,](#page-48-0) [55](#page-54-0) [initial segment](#page-13-2) [14,](#page-13-1) [16,](#page-15-0) [17,](#page-16-0) [18,](#page-17-0) [19,](#page-18-2) [20,](#page-19-1) [21,](#page-20-0) [22,](#page-21-1) [25,](#page-24-0) [26,](#page-25-0) [38,](#page-37-0) [70,](#page-69-1) [71](#page-70-0) [antisymmetric](#page-11-0) [12,](#page-11-1) [13,](#page-12-2) [18](#page-17-0) [least element](#page-12-3) [13,](#page-12-2) [14,](#page-13-1) [15,](#page-14-1) [19,](#page-18-2) [20,](#page-19-1) [21](#page-20-0) $≤$ 12 [transitive](#page-11-3) [12](#page-11-1) [reflexive](#page-11-4) [12,](#page-11-1) [18](#page-17-0) [trichotomous](#page-11-5) [12,](#page-11-1) [18](#page-17-0) [limit ordinal](#page-22-0) [23,](#page-22-2) [24,](#page-23-0) [25,](#page-24-0) [26,](#page-25-0) [27,](#page-26-0) [28,](#page-27-0) [36,](#page-35-0) [37,](#page-36-0) [41,](#page-40-0) [72,](#page-71-2) [73,](#page-72-1) [74,](#page-73-0) [78](#page-77-0) [linear order](#page-11-6) [12,](#page-11-1) [13,](#page-12-2) [14,](#page-13-1) [15,](#page-14-1) [18,](#page-17-0) [20,](#page-19-1) [29,](#page-28-0) [30,](#page-29-1) [31,](#page-30-1) [37,](#page-36-0) [70,](#page-69-1) [71](#page-70-0) $< 12, 13, 37$ $< 12, 13, 37$ $< 12, 13, 37$ $< 12, 13, 37$ $< 12, 13, 37$ [irreflexive](#page-11-8) [12](#page-11-1) [local](#page-68-2) [68,](#page-67-0) [69](#page-68-0) [transitive](#page-11-9) [12,](#page-11-1) [14,](#page-13-1) [18,](#page-17-0) [65](#page-64-3) [trichotomous](#page-11-6) [12](#page-11-1)

[least upper bound](#page-32-1) [33](#page-32-0) [model](#page-46-3) [47,](#page-46-0) [48,](#page-47-0) [49,](#page-48-0) [55,](#page-54-0) [56,](#page-55-0) [57,](#page-56-0) [58,](#page-57-0) [59,](#page-58-0) [60,](#page-59-3) [65](#page-64-3) [nested](#page-18-3) [19,](#page-18-2) [21](#page-20-0) $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ $-3, 4, 5, 6, 9, 10, 11, 38, 42, 44, 48, 49, 50, 52, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68,$ [70](#page-69-1) I_{α} I_{α} [20,](#page-19-1) [21](#page-20-0) \cdot [27,](#page-26-0) [28](#page-27-0) $\leq 20, 21, 27, 28$ $< 20, 21, 26, 27, 28, 41$ $< 20, 21, 26, 27, 28, 41$ $< 20, 21, 26, 27, 28, 41$ $< 20, 21, 26, 27, 28, 41$ $< 20, 21, 26, 27, 28, 41$ $< 20, 21, 26, 27, 28, 41$ $< 20, 21, 26, 27, 28, 41$ $< 20, 21, 26, 27, 28, 41$ ω_1 [22,](#page-21-1) [23,](#page-22-2) [28,](#page-27-0) [79,](#page-78-0) [84](#page-83-0) ω [20,](#page-19-1) [21,](#page-20-0) [22,](#page-21-1) [23,](#page-22-2) [24,](#page-23-0) [27,](#page-26-0) [28,](#page-27-0) [72](#page-71-2) [order-preserving](#page-33-3) [34,](#page-33-1) [35,](#page-34-0) [37](#page-36-0) [+](#page-22-1) [23,](#page-22-2) [24,](#page-23-0) [25,](#page-24-0) [26,](#page-25-0) [27,](#page-26-0) [41,](#page-40-0) [73](#page-72-1) [∨](#page-3-4) [3,](#page-2-0) [4,](#page-3-2) [5,](#page-4-0) [42,](#page-41-0) [44,](#page-43-2) [55,](#page-54-0) [57,](#page-56-0) [59,](#page-58-0) [61](#page-60-1) [ordinal addition](#page-22-4) [23](#page-22-2) [ordinal](#page-18-4) [19,](#page-18-2) [20,](#page-19-1) [21,](#page-20-0) [22,](#page-21-1) [23,](#page-22-2) [24,](#page-23-0) [25,](#page-24-0) [26,](#page-25-0) [27,](#page-26-0) [28](#page-27-0) [order-isomorphic](#page-12-4) [13,](#page-12-2) [15,](#page-14-1) [17,](#page-16-0) [18,](#page-17-0) [19,](#page-18-2) [20,](#page-19-1) [21,](#page-20-0) [25,](#page-24-0) [26,](#page-25-0) [70](#page-69-1) [order-isomorphism](#page-12-5) [13,](#page-12-2) [14,](#page-13-1) [15,](#page-14-1) [17,](#page-16-0) [18,](#page-17-0) [20,](#page-19-1) [25,](#page-24-0) [70](#page-69-1) α^{+} [20,](#page-19-1) [21,](#page-20-0) [22,](#page-21-1) [23,](#page-22-2) [24,](#page-23-0) [25,](#page-24-0) [26,](#page-25-0) [27,](#page-26-0) [28,](#page-27-0) [70,](#page-69-1) [71,](#page-70-0) [72,](#page-71-2) [73,](#page-72-1) [74](#page-73-0) [order type](#page-18-0) [19,](#page-18-2) [20,](#page-19-1) [21,](#page-20-0) [22,](#page-21-1) [23,](#page-22-2) [25,](#page-24-0) [27,](#page-26-0) [75](#page-74-4) [Ω](#page-42-3) [42,](#page-41-0) [43,](#page-42-0) [44,](#page-43-2) [45,](#page-44-1) [46,](#page-45-0) [47,](#page-46-0) [48,](#page-47-0) [49,](#page-48-0) [50,](#page-49-0) [54,](#page-53-0) [55,](#page-54-0) [56,](#page-55-0) [58,](#page-57-0) [60](#page-59-3) [Π](#page-42-4) [42,](#page-41-0) [43,](#page-42-0) [44,](#page-43-2) [45,](#page-44-1) [46,](#page-45-0) [47,](#page-46-0) [48,](#page-47-0) [49,](#page-48-0) [54,](#page-53-0) [55,](#page-54-0) [56,](#page-55-0) [58,](#page-57-0) [60](#page-59-3) [induction](#page-58-1) [58,](#page-57-0) [59](#page-58-0) [partial order](#page-28-1) [29,](#page-28-0) [30,](#page-29-1) [38](#page-37-0) [s](#page-57-2) [58,](#page-57-0) [59](#page-58-0)

 $\models 5, 6, 8, 9, 10, 11, 49$ $\models 5, 6, 8, 9, 10, 11, 49$ [∃](#page-43-1) [44,](#page-43-2) [48,](#page-47-0) [49,](#page-48-0) [55,](#page-54-0) [56,](#page-55-0) [57,](#page-56-0) [59,](#page-58-0) [60,](#page-59-3) [61,](#page-60-1) [62,](#page-61-1) [63,](#page-62-0) [64,](#page-63-2) [65,](#page-64-3) [66,](#page-65-1) [67,](#page-66-0) [68,](#page-67-0) [73,](#page-72-1) [75](#page-74-4) [∀](#page-43-0) [43,](#page-42-0) [44,](#page-43-2) [45,](#page-44-1) [46,](#page-45-0) [47,](#page-46-0) [48,](#page-47-0) [49,](#page-48-0) [50,](#page-49-0) [51,](#page-50-0) [52,](#page-51-0) [53,](#page-52-0) [54,](#page-53-0) [56,](#page-55-0) [57,](#page-56-0) [58,](#page-57-0) [59,](#page-58-0) [60,](#page-59-3) [61,](#page-60-1) [62,](#page-61-1) [63,](#page-62-0) [64,](#page-63-2) [65,](#page-64-3) [66,](#page-65-1) [67,](#page-66-0) [68,](#page-67-0) [69,](#page-68-0) [70,](#page-69-1) [73,](#page-72-1) [75](#page-74-4) \Rightarrow [43,](#page-42-0) [44,](#page-43-2) [48,](#page-47-0) [49,](#page-48-0) [50,](#page-49-0) [51,](#page-50-0) [52,](#page-51-0) [53,](#page-52-0) [54,](#page-53-0) [58,](#page-57-0) [59,](#page-58-0) [60,](#page-59-3) [61,](#page-60-1) [62,](#page-61-1) [63,](#page-62-0) [64,](#page-63-2) [65,](#page-64-3) [66,](#page-65-1) [67,](#page-66-0) [68,](#page-67-0) [69,](#page-68-0) [70](#page-69-1) \leq [29,](#page-28-0) [30,](#page-29-1) [31,](#page-30-1) [32,](#page-31-0) [33,](#page-32-0) [34,](#page-33-1) [35,](#page-34-0) [36,](#page-35-0) [37,](#page-36-0) [38,](#page-37-0) [39,](#page-38-1) [40,](#page-39-0) [41](#page-40-0) [model](#page-5-3) [6,](#page-5-1) [8,](#page-7-1) [9,](#page-8-0) [11](#page-10-2) [maximal](#page-35-1) [35,](#page-34-0) [36](#page-35-0) [maximal element](#page-35-2) [35,](#page-34-0) [36,](#page-35-0) [38,](#page-37-0) [40,](#page-39-0) [41](#page-40-0) [partially ordered set](#page-28-3) [29,](#page-28-0) [30,](#page-29-1) [31,](#page-30-1) [32,](#page-31-0) [33,](#page-32-0) [34,](#page-33-1) [35,](#page-34-0) [36,](#page-35-0) [37,](#page-36-0) [40,](#page-39-0) [41,](#page-40-0) [42,](#page-41-0) [43,](#page-42-0) [44,](#page-43-2) [45,](#page-44-1) [48](#page-47-0) [sup](#page-32-2) [33,](#page-32-0) [34](#page-33-1) [⊥](#page-43-7) [43,](#page-42-0) [44,](#page-43-2) [46](#page-45-0) [proof](#page-5-4) [6,](#page-5-1) [7,](#page-6-0) [8,](#page-7-1) [9,](#page-8-0) [10,](#page-9-1) [11](#page-10-2) [primitive proposition](#page-2-2) [3,](#page-2-0) [38,](#page-37-0) [42](#page-41-0) [proposition](#page-2-1) [3,](#page-2-0) [6,](#page-5-1) [42,](#page-41-0) [49](#page-48-0) [L](#page-2-3) [3,](#page-2-0) [4,](#page-3-2) [5,](#page-4-0) [6,](#page-5-1) [7,](#page-6-0) [8,](#page-7-1) [9,](#page-8-0) [10,](#page-9-1) [11,](#page-10-2) [38,](#page-37-0) [42,](#page-41-0) [49](#page-48-0) L_1 L_1 [3,](#page-2-0) [4,](#page-3-2) [5,](#page-4-0) [9](#page-8-0) [P](#page-2-5) [3,](#page-2-0) [4,](#page-3-2) [5,](#page-4-0) [9,](#page-8-0) [38,](#page-37-0) [42](#page-41-0) [proper](#page-63-4) [64](#page-63-2) [v](#page-3-5) [4,](#page-3-2) [5,](#page-4-0) [6,](#page-5-1) [8,](#page-7-1) [9,](#page-8-0) [10,](#page-9-1) [49](#page-48-0) [semantically entails](#page-4-2) [5](#page-4-0) \vdash [6,](#page-5-1) [7,](#page-6-0) [8,](#page-7-1) [9,](#page-8-0) [10,](#page-9-1) [11,](#page-10-2) [38,](#page-37-0) [49](#page-48-0) $= 6$ $= 6$ $= 6$ [theorem](#page-5-7) [6](#page-5-1) $\vdash 6, 8$ $\vdash 6, 8$ $\vdash 6, 8$

r[-induction](#page-68-3) [69,](#page-68-0) [70](#page-69-1) r[-recursion](#page-68-4) [69](#page-68-0) [satisfied](#page-46-4) [47](#page-46-0) [sentence](#page-44-4) [45,](#page-44-1) [47,](#page-46-0) [48,](#page-47-0) [49,](#page-48-0) [51,](#page-50-0) [54,](#page-53-0) [55,](#page-54-0) [56,](#page-55-0) [57,](#page-56-0) [58,](#page-57-0) [59](#page-58-0) [ordinal](#page-69-2) [70,](#page-69-1) [71](#page-70-0) [+](#page-25-1) [25,](#page-24-0) [26](#page-25-0) $\models 49, 52, 54, 56$ $\models 49, 52, 54, 56$ [cong](#page-74-0) [75](#page-74-4) \vdash [51,](#page-50-0) [52,](#page-51-0) [53,](#page-52-0) [54,](#page-53-0) [55,](#page-54-0) [56,](#page-55-0) [59](#page-58-0) [structure](#page-44-5) [45,](#page-44-1) [49,](#page-48-0) [51,](#page-50-0) [56,](#page-55-0) [59,](#page-58-0) [60,](#page-59-3) [64](#page-63-2) $p[t/x]$ $p[t/x]$ $p[t/x]$ [50,](#page-49-0) [55,](#page-54-0) [56,](#page-55-0) [58,](#page-57-0) [59,](#page-58-0) [63,](#page-62-0) [64](#page-63-2) X^+ X^+ [18,](#page-17-0) [20](#page-19-1) [successor ordinal](#page-22-5) [23](#page-22-2) [supremum](#page-32-3) [33](#page-32-0) [synthetic addition](#page-25-2) [25,](#page-24-0) [26](#page-25-0) [tautology](#page-4-3) [5,](#page-4-0) [6,](#page-5-1) [8,](#page-7-1) [51](#page-50-0) [term](#page-42-5) [42,](#page-41-0) [43,](#page-42-0) [46,](#page-45-0) [50,](#page-49-0) [55,](#page-54-0) [56](#page-55-0) [theory](#page-46-5) [47,](#page-46-0) [48,](#page-47-0) [49,](#page-48-0) [51,](#page-50-0) [54,](#page-53-0) [55,](#page-54-0) [56,](#page-55-0) [57,](#page-56-0) [58,](#page-57-0) [59,](#page-58-0) [60](#page-59-3) [transitive](#page-64-0) [65,](#page-64-3) [66,](#page-65-1) [68,](#page-67-0) [69,](#page-68-0) [70,](#page-69-1) [71,](#page-70-0) [72,](#page-71-2) [73](#page-72-1) \top [3,](#page-2-0) [4,](#page-3-2) [42,](#page-41-0) [44](#page-43-2) [upper bound](#page-32-4) [32,](#page-31-0) [33,](#page-32-0) [34,](#page-33-1) [36,](#page-35-0) [39,](#page-38-1) [41](#page-40-0) [variable](#page-42-6) [42,](#page-41-0) [43,](#page-42-0) [44,](#page-43-2) [45,](#page-44-1) [49,](#page-48-0) [50,](#page-49-0) [53,](#page-52-0) [54,](#page-53-0) [55,](#page-54-0) [59,](#page-58-0) [64,](#page-63-2) [67,](#page-66-0) [68](#page-67-0) [von Neumann hierarchy](#page-71-1) [72,](#page-71-2) [73](#page-72-1) V_{α} V_{α} [72,](#page-71-2) [73,](#page-72-1) [74,](#page-73-0) [75](#page-74-4)

[rank](#page-72-0) [73,](#page-72-1) [74,](#page-73-0) [75](#page-74-4)

[valuation](#page-3-7) [4,](#page-3-2) [5,](#page-4-0) [6,](#page-5-1) [9,](#page-8-0) [42,](#page-41-0) [49](#page-48-0)

[well-ordering](#page-12-1) [13,](#page-12-2) [14,](#page-13-1) [15,](#page-14-1) [16,](#page-15-0) [17,](#page-16-0) [18,](#page-17-0) [19,](#page-18-2) [20,](#page-19-1) [21,](#page-20-0) [22,](#page-21-1) [25,](#page-24-0) [27,](#page-26-0) [38,](#page-37-0) [39,](#page-38-1) [40,](#page-39-0) [70,](#page-69-1) [71,](#page-70-0) [75](#page-74-4) [<](#page-12-0) [13,](#page-12-2) [15,](#page-14-1) [16,](#page-15-0) [17,](#page-16-0) [18,](#page-17-0) [19,](#page-18-2) [21,](#page-20-0) [22,](#page-21-1) [23,](#page-22-2) [24,](#page-23-0) [25,](#page-24-0) [26,](#page-25-0) [27,](#page-26-0) [28,](#page-27-0) [71,](#page-70-0) [72,](#page-71-2) [73,](#page-72-1) [74,](#page-73-0) [75,](#page-74-4) [76,](#page-75-1) [79](#page-78-0) [well-founded](#page-67-1) [68,](#page-67-0) [69,](#page-68-0) [70](#page-69-1)

 \sqcup [25,](#page-24-0) [26](#page-25-0)

 $≤ 17, 18, 19, 20$ $≤ 17, 18, 19, 20$ $≤ 17, 18, 19, 20$ $≤ 17, 18, 19, 20$ $≤ 17, 18, 19, 20$ $≤ 17, 18, 19, 20$

 $< 18, 20$ $< 18, 20$ $< 18, 20$ $< 18, 20$

[∈](#page-59-0) [60,](#page-59-3) [61,](#page-60-1) [62,](#page-61-1) [63,](#page-62-0) [64,](#page-63-2) [65,](#page-64-3) [66,](#page-65-1) [67,](#page-66-0) [68,](#page-67-0) [69,](#page-68-0) [70,](#page-69-1) [71,](#page-70-0) [72,](#page-71-2) [73,](#page-72-1) [74](#page-73-0)