%! TEX root = AlgT.tex % vim: tw=50 % 07/02/2024 11AM \begin{flashcard}[based-uniqueness-prop] \begin{proposition*}[Based uniqueness] \label{based_uniqueness} \cloze{Let $\bs(X, x_0)$ satisfy the conditions for \nameref{unicov_existence}. If $p_1 : \bs(\tilde{X}_1, \tilde{x}_1) \to \bs(X, x_0)$, $p_2 : \bs(\tilde{X}_2, \tilde{x}_2) \to \bs(X, x_0)$ are \gls{pathconn} \glspl{covsp}, then the following are equivalent: \begin{itemize} \item there exists homeomorphism $h : \bs(\tilde{X}_1, \tilde{x}_1) \to \bs(\tilde{X}_2, \tilde{x}_2)$ such that $p_2 \circ h = p_1$ \item $\ps{(p_1)} \pio\bs(\tilde{X_1}, \tilde{x}_1) = \ps{(p_2)} \pio\bs(\tilde{X}_1, \tilde{x}_1)$ \end{itemize} } \end{proposition*} \begin{proof} \cloze{If $h$ exists, then \[ \Im(\ps{(p_1)}) = \Im(\ps{(p_2)} \circ \ps h) \] as $\ps h$ is an isomorphism. For the other direction, let $H \le \pio\bs(X, x_0)$ be the common image. Will show that $\tilde{X}_1$ and $\tilde{X}_2$ are homeomorphic to $\ol{X}_H$ (over $X$). Consider \begin{align*} r : \ol{X} &\to \tilde{X}_1 \\ [\gamma] &\mapsto \tilde{\gamma}(1) \end{align*} end point of the lift $\tilde{\gamma}$ of $\gamma$ to $\tilde{X}_1$, starting at $\tilde{x}_1$. Notice \begin{align*} r([\gamma]) = r([\gamma']) &\iff \text{$\tilde{\gamma}$ and $\tilde{\gamma}'$ end at the same point of $\tilde{X}_1$} \\ \iff [\gamma' \concat \invpath \gamma] \in \ps{(p_1)} \pio\bs(\tilde{X}_1, \tilde{x}_1) = H \\ \iff [\gamma] \sim_H [\gamma'] \end{align*} So $r$ descends to a map \[ q : \bs(\ol{X}_H, [[\constpath{x_0}]]) \to \bs(\tilde{X}_1, \tilde{x}_1) ,\] a bijection. It is also an open map, as $\ol{X}_H$ and $\tilde{X}_1$ are both locally homeomorphic to $X$. So $q$ is a homeomorphism.} \end{proof} \end{flashcard} \begin{flashcard}[unbased-uniqueness-coro] \begin{corollary*}[Unbased uniqueness] \label{unbased_uniqueness} \cloze{Let $X$ satisfy the conditions from \nameref{unicov_existence}. If $p_1 : \tilde{X}_1 \to X$ and $p_2 : \tilde{X}_2 \to X$ are \gls{pathconn} \glspl{covsp}, then the following are equivalent: \begin{itemize} \item there exists homeomorphism $h : \tilde{X}_1 \to \tilde{X}_2$ such that $p_2 \circ h = p_1$ \item $\ps{(p_1)} \pio\bs(\tilde{X}_1, \tilde{x}_1)$ and $\ps{(p_2)} \pio\bs(\tilde{X}_2, \tilde{x}_2)$ are conjugate in $\pio\bs(X, x_0)$ for any $\tilde{x}_1 \in p_1^{-1}(x_0)$, $\tilde{x}_2 \in p_2^{-1}(x_0)$. \end{itemize} } \end{corollary*} \begin{proof} \cloze{If $h$ exists, choose $\ol{x}_1 \in p_1^{-1}(x_0)$ and $\tilde{x}_2 = h(\tilde{x}_1)$. \nameref{based_uniqueness} applies to see that the groups are determined. Conversely, suppose $[\gamma] \in \pio\bs(X, x_0)$ is such that \[ [\gamma]^{-1} \concat \ps{(p_1)} \pio\bs(\tilde{X}_1, \tilde{x}_1) \concat [\gamma] = \ps{(p_2)} \pio\bs(\tilde{X}_2, \tilde{x}_2) .\] Lif $\gamma$ to $\tilde{X}_1$ starting $\tilde{x}_1$, and say it ends at $\tilde{x}_1'$. Then \[ \LHS = \ps{(p_1)} \pio\bs(\tilde{X}_1, \tilde{x}_1') .\] Now by \nameref{based_uniqueness}, we can find a homeomorphism $h : \bs(\tilde{X}_1, \tilde{x}_1') \to \bs(\tilde{X}_2, \tilde{x}_2)$, which can be viewed as an unbased homeomorphism.} \end{proof} \end{flashcard} So we now have bijections: \[ \left\{ \substack{ \text{based \gls{pathconn}} \\ \text{\glspl{covmap} of $\bs(X, x_0)$} } \right\} / \substack{ \text{based homeomorphism} \\ \text{over $X$} } \leftrightarrow \left\{ \substack{ \text{subgroups of} \\ \text{$\pio\bs(X, x_0)$} } \right\} \] \[ \left\{ \substack{ \text{\gls{pathconn}} \\ \text{\glspl{covmap} of $X$} } \right\} / \substack{ \text{homeomorphism} \\ \text{over $X$} } \leftrightarrow \left\{ \substack{ \text{conjugacy classes of} \\ \text{subgroups of $\pio\bs(X, x_0)$} } \right\} \] \setcounter{section}{4} \setcounter{subsection}{0} \subsection{Free groups and presentations} \begin{flashcard}[alphabet-words-defn] \begin{definition*}[Alphabet and words] \glsnoundefn{alpha}{alphabet}{alphabets} \glssymboldefn{alpha}{$S$}{$S$} \glsnoundefn{word}{word}{words} \glsadjdefn{redword}{reduced}{word} \glsnoundefn{elred}{elementary reduction}{elementary reductions} \cloze{Let $S = \{s_\alpha\}_{\alpha \in I}$ be a set, called the \emph{alphabet}, $S^{-1} = \{s_\alpha^{-1}\}_{\alpha \in I}$ (suppose $S \cap S^{-1} = \emptyset$. A \emph{word} in the \gls{alpha} $\aS$ is a (possibly empty) finite sequence $(x_1, x_2, \ldots, x_n)$ of elements in $\aS \cup \aS^{-1}$. A word is \emph{reduced} if it does not contain $(s_\alpha, s_\alpha^{-1})$ or $(s_\alpha^{-1}, s_\alpha)$ as a subword. An \emph{elementary reduction} consists of removing such a subword from a word.} \end{definition*} \end{flashcard} \begin{flashcard}[free-group-defn] \begin{definition*}[Free group] \glsnoundefn{freeg}{free group}{free groups} \glssymboldefn{F}{$F(S)$}{$F(S)$} \cloze{The \emph{free group} on the \gls{alpha} $\aS$, denoted $\F(S)$, is the set of \gls{redword} (possibly empty) \glspl{word} in this \gls{alpha}. The group operation is given by concatenation, and doing \glspl{elred} until it is \gls{redword}.} \end{definition*} \end{flashcard} \vspace{-1em} Note that the group operation here is not obviously well-defined. We will not prove here that it is well-defined. See the lecturer's notes for a proof. Clearly we have that the empty string is the identity, and for any word $(x_1, \ldots, x_n)$, it has inverse $(x_n^{-1}, \ldots, x_1^{-1})$. There is a function $i : S \to \F(S)$, $s \mapsto (s)$. \begin{flashcard}[universal-property-of-free-groups-lemma] \begin{lemma*}[Universal property of free groups] \cloze{For any group $H$, the function \[ \left\{ \substack{ \text{homomorphisms} \\ \phi : \F(S) \to H } \right\} \stackrel{- \circ i}{\to} \left\{ \substack{functions} \\ \phi : S \to H \right\} \] is a bijection.} \end{lemma*} \begin{proof} Given $\phi : S \to H$, want a $\phi : \F(S) \to H$ such that $\phi((s)) = \phi(s)$. Let, on a not-necessarily-\gls{redword} \gls{word} $(s_{\alpha_1}^{\eps_1}, \ldots, s_{\alpha_n}^{\eps_n})$, \[ \phi((s_{\alpha_1}^{\eps_1}, \ldots, s_{\alpha_n}^{\eps_n})) = \phi(s_{\alpha_1})^{\eps_1} \cdots \phi(s_{\alpha_n}^{\eps_n}) \in H .\] If the word contained $(s_\alpha, s_\alpha^{-1})$, then the result contains $\phi(s_\alpha) \phi(s_\alpha)^{-1} = e \in H$. So $\phi$ is well-defined. As the group operation on $\F(S)$ is by concatenation, we see $\phi$ is a homomorphism. \end{proof} \end{flashcard} \begin{flashcard}[group-with-relations] \begin{definition*}[Group with relations] \glssymboldefn{gpgen}{$\langle S \mid R \rangle$}{$\langle S \mid R \rangle$} \glssymboldefn{relgen}{$\llangle R \rrangle$}{$\llangle R \rrangle$} \glsnoundefn{pres}{presentation}{presentations} \glsadjdefn{finp}{finite}{presentation} \cloze{Let $S$ be a set and $R \subseteq \F(S)$. Then \[ \langle S \mid R \rangle = \F(S) / \llangle R \rrangle \] with \[ \llangle R \rrangle = \{(r_1^{\eps_1})^{g_1} \cdots (r_n^{\eps_n})^{g_n} \st r_i \in R, \eps_i \in \{\pm 1\}, g \in \F(S)\} \normalsub \F(S) ,\] where $h^g$ denotes $g^{-1} hg$. Call this ($S$ and $R$) a \emph{presentation} of the group $\langle S \mid R \rangle$. If $S$ and $R$ are finite, call it a \emph{finite presentation}.} \end{definition*} \end{flashcard}