%! TEX root = AlgT.tex % vim: tw=50 % 02/02/2024 11AM \begin{flashcard}[FTA-proof] \begin{theorem*}[Fundamental Theorem of Algebra] Any non-constant polynomial over $\CC$ has a root in $\CC$. \end{theorem*} \begin{proof} \cloze{Let $p(z) = z^n + a_1 z^{n - 1} + \cdots + a_n$ a monic polynomial over $\CC$. Choose \[ r > \max(|a_1| + |a_2| + \cdots + |a_n|, 1) \] On the circle $|z| = r$, we have \begin{align*} |z^n| &= |z^{n - 1}| r \\ &> |z^{n - 1}| (|a_1| + \cdots + |a_n|) \\ &> |a_1 z^{n - 1} + \cdots + a_n| \end{align*} Therefore for any $t \in [0, 1]$, the polynomial \[ p_t(z) = z^n + t(a_1 z^{n - 1} + \cdots + a_n) \] does not have a root on the circle $|z| = r$. Consider the \gls{homotopy} of loops in $S^1 \subset \CC$: \[ F(s, t) = \frac{p_t(r \cdot e^{2\pi i s}) / p_t(r)}{|p_t(r \cdot e^{2\pi i s}) / p_t(r)|} .\] The divisions is allowed since we know that at all times $t$, the polynomial does not have a root on the circle $|z| = r$. At $t = 0$, it is the loop $s \mapsto e^{2\pi i sn}$. This is $n \in \ZZ \cong \pio\bs(S^1, 1)$. At $t = 1$, it is the loop \[ s \stackrel{f_r}{\to} \frac{p(r \cdot e^{2\pi i s}) / p(r)}{|p(r \cdot e^{2\pi i s}) / p(r)|} .\] This also represents $n \in \ZZ \cong \pio\bs(S^1, 1)$. Suppose $p$ has no roots. Then $f_n$ is a continuous loop for all $r \in [0, \infty)$ and varying $r$ gives a \gls{homotopy} from $f_r$ to $f_0$. Note that the loop $f_0$ is: \[ s \mapsto f_0(s) = \frac{p(r) / p(r)}{|p(r) / p(r)|} = 1 \] This corresponds to the constant loop, i.e. $0 \in \ZZ \cong \pio\bs(S^1, 1)$. Hence we must have $n = 0 \in \ZZ$, so $p$ was constant.} \end{proof} \end{flashcard} \subsection{Construction of universal covers} \textbf{Observation 1:} Let $p : \tilde{X} \to X$ a \gls{unicov}, $x \in X$. Let $U \ni x$ a neighbourhood which is \gls{evencov} (i.e. $p^{-1}(U) = \coprod V_\alpha$). Let $\gamma : I \to U$ be a loop in $U$ based at $x_0$. This \glspl{lift} to a \[ \begin{tikzcd} \tilde{\gamma} : I \ar[rr] \ar[rd, "\gamma", swap] && V_\alpha \subset \tilde{X} \\ & U \ar[ur, "p|_{V_\alpha}^{-1}", swap] \end{tikzcd} \] This is \gls{homotopic} to a constant loop in $\tilde{X}$, as $\tilde{X}$ is \gls{simpconn}. Applying $p$ gives $\gamma \homotopic \constpath{x_0}$ in $X$, i.e. ``every $x \in X$ has a neighbourhood $U \ni x$ such that the \gls{map} $\pio\bs(U, x) \stackrel{\ps{(\inc)}}{\to} \pio\bs(X, x)$ is trivial''. We call this property ``semi-locally simply connected''. \begin{flashcard}[semi-locally-simply-connected-defn] \begin{definition*}[Semi-locally simply-connected] \glsadjdefn{slsc}{semi-locally simply-connected}{space} \cloze{We say a space $X$ is \emph{semi-locally simply-connected} if every $x \in X$ has a neighbourhood $U \ni x$ such that \[ \pio\bs(U, x) \stackrel{\ps{(\inc)}}{\to} \pio\bs(X, x) \] is trivial.} \end{definition*} \end{flashcard} \begin{example*} The ``Hawaiian earring'' is not \gls{slsc}: \begin{center} \includegraphics[width=0.6\linewidth]{images/f4504ddd9cf3469a.png} \end{center} The circles all share a common tangency point, and we have a circle of radius $\frac{1}{n}$ for each $n$. \end{example*} \textbf{Observation 2:} Suppose $p : \tilde{X} \to X$ is a \gls{unicov} and $x_0 = p(\tilde{x}_0)$ is a base point. Any $y \in \tilde{X}$ has a \emph{unique} \gls{path} $\alpha$ from $\tilde{x}_0$ to $y$ (up to \gls{homotopy}). Then \[ y = \text{the end point of the lift of $p \circ \alpha$ starting at $\tilde{x}_0$.} ,\] i.e. there is a \emph{bijection} \begin{align*} \tilde{X} &\rightarrow \left\{ \substack{ \text{\gls{homotopy} classes of} \\ \text{\glspl{path} in $X$ starting} \\ \text{at $x_0$} } \right\} \\ y &\mapsto p \circ \alpha \\ \tilde{\gamma}(1) &\mapsfrom [\gamma] \end{align*} \begin{flashcard}[slsc-implies-unicov-existence-thm] \begin{theorem*}[Existence of universal covers] \label{unicov_existence} \cloze{Let $X$ be \gls{pathconn}, \gls{locpathconn}, and \gls{slsc}. Then it has a \gls{unicov}.} \end{theorem*} \end{flashcard} \begin{proof}[Proof (non-examinable)] As a set let \[ \tilde{X} \defeq \left\{ \substack{ \text{\gls{homotopy} classes of} \\ \text{\glspl{path} in $X$ starting} \\ \text{at $x_0$} } \right\} ,\] and \begin{align*} p : \tilde{X} &\to X \\ [\gamma] &\mapsto \gamma(1) \end{align*} Want: \begin{enumerate}[(i)] \item Make a topology on $\tilde{X}$. \item Show $p$ is continuous. \item Show $p$ is a \gls{covmap}. \item Show $\tilde{X}$ is \gls{simpconn}. \end{enumerate} Consider \[ \mathcal{U} = \{U \subset X \st \text{$U$ open, \gls{pathconn} and $\pio\bs(U, x) \to \pio\bs(X, x)$ is trivial $\forall x \in U$}\} \] \textbf{Claim:} This is a basis for the topology on $X$. Proof: Let $V \ni x$ be an open neighbourhood. Then: \begin{enumerate}[(i)] \item $X$ \gls{slsc} $\implies \exists U' \ni x$ such that $\pio\bs(U', x) \to \pio(X, x)$ is trivial. \item As $X$ is \gls{locpathconn}, can fine $V \cap U' \supset U \ni x$ which is \gls{pathconn}. \item The map \[ \begin{tikzcd}[ampersand replacement=\&] \pio\bs(U, x) \ar[rr] \&\& \pio\bs(X, x) \\ \& \pio\bs(U', x) \ar[ur, "\mathrm{triv}"] \end{tikzcd} \] is trivial. \item Let $y \in U$ be another point, and $u : I \to U$ be a \gls{path} from $x$ to $y$. Then the following diagram commutes \[ \begin{tikzcd}[ampersand replacement=\&] \pio\bs(U, y) \ar[r] \& \pio\bs(X, y) \\ \pio\bs(U, x) \ar[u, "\simeq" description, "\pathisom u"] \ar[r, "\mathrm{trivial}"] \& \pio\bs(X, x) \ar[u, "\simeq" description, "\pathisom u"] \end{tikzcd} \] which shows the top \gls{map} is trivial. \end{enumerate} This completes the proof of the claim. For $[\alpha] \in \tilde{X}$ and a $U \in \mathcal{U}$ such that $\alpha(1) \in U$, define \[ ([\alpha], U) = \{[\beta] \in \tilde{X} \st [\beta] = [\alpha \concat \alpha'] \text{ for some \gls{path} $\alpha'$ in $U$}\} .\] \begin{center} \includegraphics[width=0.6\linewidth]{images/8db9732ec2e54f9e.png} \end{center} \textbf{Claim:} These sets form a basis for a topology on $\tilde{X}$. Proof: Let $[\beta] \in ([\alpha_0], U_0) \cap (\alpha_1, U_1)$. As in the figure, there are $\alpha_0', \alpha_1'$ with $[\alpha \concat \alpha_0'] = [\beta] = [\alpha_1 \concat \alpha_1']$. Let $\beta(1) \in W \subset U_0 \cap U_1$ with $W \in \mathcal{U}$. Want to show \[ ([\beta], W) \subset ([\alpha_0], U_0) \cap ([\alpha_1], U_1) \] If $[\gamma] \in ([\beta], W)$, then there is a \gls{path} $\delta$ in $W$ with \[ [\gamma] = [\beta \concat \delta] = [\alpha_0 \concat \ub{\alpha_0' \concat \delta}_{\in U_0}] \in ([\alpha_0], U_0) .\] Similarly \[ [\gamma] = [\beta \concat \delta] = [\alpha_1 \concat \ub{\alpha_1' \concat \delta}_{\in U_1}] \in ([\alpha_1], U_1) .\] This finishes the proof of the claim.