%! TEX root = AlgT.tex % vim: tw=50 % 31/01/2024 11AM \begin{flashcard}[ps-covmap-inj-hom-lemma] \begin{lemma*} Let $p : \tilde{X} \to X$ be a \gls{covmap}, $x_0 \in X$, $\tilde{x}_0 \in p^{-1}(x_0) \subset \tilde{X}$. Then \[ \ps p : \pio\bs(\tilde{X}, \tilde{x}_0) \to \pio\bs(X, x_0) \] is an injective homomorphism. \end{lemma*} \begin{proof} \cloze{Let $\gamma : I \to \tilde{X}$ be a loop based at $\tilde{x}_0$, and suppose $\ps p[\gamma] = [p \circ \gamma] = [\constpath{x_0}]$ so $p \circ \gamma \homotopic_H \constpath{x_0}$ as loops. Now \gls{lift} $H$ to a \gls{homotopy} $\tilde{H}$ starting at $\gamma$ (by \nameref{path_lifting}): then $\tilde{H}$ is a \gls{homotopy} of \glspl{path} from $\gamma$ to a \gls{lift} of $\constpath{x_0}$, which must be $\constpath{\tilde{x}_0}$ (by uniqueness). So $[\gamma] = [\constpath{\tilde{x}_0}] = e \in \pio\bs(\tilde{X}, \tilde{x}_0)$.} \end{proof} \end{flashcard} \glsnoundefn{covaction}{action}{actions} \glssymboldefn{covact}{$\cdot$}{$\cdot$} In the proof of the previous Corollary we constructed for a path $\gamma : I \to X$ from $x_0$ to $x_1$ a bijection $\gamma_* : p^{-1}(x_0) \to p^{-1}(x_1)$. It only depended on the \gls{homotopy} class of the path $\gamma$. This defines a (right) action of $\pio\bs(X, x_0)$ on $p^{-1}(x_0)$, via \[ y_0 \covact [\gamma] \defeq \tilde{\gamma}(1) \] for $\tilde{\gamma}$ \emph{the} \gls{lift} of $\gamma$ starting at $y_0$. \begin{flashcard}[pathconn-pio-lemma] \begin{lemma*} Let $p : \tilde{X} \to X$ be a \gls{covmap}, $X$ \gls{pathconn} and $x_0 \in X$. Then: \begin{enumerate}[(i)] \item \cloze{$\pio\bs(X, x_0)$ \glsref[covaction]{acts} transitively on $p^{-1}(x_0)$ if and only if $\tilde{X}$ is \gls{pathconn}.} \item \cloze{The stabiliser of $y_0 \in p^{-1}(x_0)$ is $\Im(\pio\bs(\tilde{X}, y_0) \stackrel{\ps p}{\to} \pio\bs(X, x_0)) \le \pio\bs(X, x_0)$.} \item \cloze{If $\tilde{X}$ is \gls{pathconn} then there is a bijection \[ \frac{\pio\bs(X, x_0)}{\ps p \pio\bs(\tilde{X}, y_0)} \to p^{-1}(x_0) \] induced by \glsref[covaction]{acting} on $y_0 \in p^{-1}(x_0)$.} \end{enumerate} \end{lemma*} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item \cloze{Let $\tilde{X}$ be \gls{pathconn}, and $y_0, z_0 \in p^{-1}(x_0)$. Let $\tilde{\gamma} : I \to \tilde{X}$ be a \gls{path} from $y_0$ to $z_0$, so $\gamma = p \circ \tilde{\gamma} : I \to X$ is a loop based at $x_0$. \emph{The} lift of $\gamma$ starting at $y_0$ is $\tilde{\gamma}$, and ends at $z_0$, so $y_0 \covact [\gamma] = z_0$, so transitive. \begin{center} \includegraphics[width=0.6\linewidth]{images/ac2a0c58d9604873.png} \end{center} Conversely, suppose the \gls{covaction} is transitive, let $y_0, z_0 \in \tilde{X}$. Choose a \gls{path} $\gamma$ from $p(y_0)$ to $p(z_0)$, \gls{lift} it starting at $y_0$, then it ends at $z_1$, lying in the same fibre as $z_0$. \begin{center} \includegraphics[width=0.6\linewidth]{images/9afa0bfd418b42ce.png} \end{center} Suppose $y_0$ and $z_0$ are \emph{not} in the same path-component. Then $z_1$ and $z_0$ are also not. But taking $x_0' = p(z_0)$, $\pio\bs(X, x_0')$ \glsref[covaction]{acts} transitively on $p^{-1}(x_0') \ni z_0, z_1$. So there exiss a loop $\gamma$ in $X$ whose \gls{lift} starting at $z_0$ ends at $z_1$, i.e. $z_0$ and $z_1$ are in the same path-component.} \item \cloze{Suppose $y_0 \covact [\gamma] = y_0$, then the lift $\tilde{\gamma}$ of $\gamma$ starting at $y_0$ also ends at $y_0$, so is a loop. Then $[\gamma] = \ps p [\tilde{\gamma}]$, so \[ \Stab_{\pio\bs(X, x_0)}(p^{-1}(x_0)) \le \Im(\ps p) .\] If $[\gamma] = \ps p[\gamma']$ then $\gamma'$ is the \gls{lift} of $\gamma$ starting at $y_0$, but also ends at $y_0$ so $y_0 \covact [\gamma] = y_0$.} \item \cloze{Orbit-stabiliser. \qedhere} \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[n-sheeted-defn] \begin{definition*}[$n$-sheeted] \glsadjdefn{nshtd}{$n$-sheeted}{\gls{covmap}} \cloze{If $p : \tilde{X} \to X$ is a \gls{covmap} we say that it is \emph{$n$-sheeted} if $p^{-1}(x_0)$ all have the same cardinality $n \in \NN \cup \{\infty\}$.} \end{definition*} \end{flashcard} \begin{flashcard}[unicov-defn] \begin{definition*}[Universal cover] \glsadjdefn{unicov}{universal cover}{\gls{covmap}} If $p : \tilde{X} \to X$ is a \gls{covmap} we say that it is a \emph{universal cover} if $\tilde{X}$ is \gls{simpconn}. \end{definition*} \end{flashcard} \begin{flashcard}[unicov-coro-bij-coro] \begin{corollary*} If $p : \tilde{X} \to X$ is a \gls{unicov}, then \cloze{each $\tilde{x}_0 \in p^{-1}(x_0)$ determines a bijection \begin{align*} l : \pio\bs(X, x_0) &\stackrel{\sim}{\to} p^{-1}(x_0) \\ [\gamma] &\mapsto \tilde{\gamma}(1) \end{align*} for $\tilde{\gamma}$ the \gls{lift} of $\gamma$ starting at $\tilde{x}_0$.} \end{corollary*} \end{flashcard} \vspace{-1em} This induces a group-law on $p^{-1}(x_0)$ via \[ y_0 * z_0 \defeq l(l^{-1}(y_0) \concat l^{-1}(z_0)) \] Spelling out, this is given by: \begin{itemize} \item Choose a \gls{path} $\tilde{\gamma} : I \to \tilde{X}$ from $\tilde{x}_0$ to $z_0$, \item Let $\gamma$ be the \gls{lift} of $p \circ \tilde{\gamma}$ starting at $y_0$, \item $y_1 * z_1 = \gamma(1)$ \end{itemize} \begin{center} \includegraphics[width=0.6\linewidth]{images/5d222df5af4744ff.png} \end{center} \setcounter{section}{3} \setcounter{subsection}{0} \subsection{Fundamental group of $S^1$} \begin{flashcard}[fundgp-s1-iso-Z] \begin{theorem*} Let $u : I \to S^1$ be $u(s) = e^{2\pi i s}$, which is based at $1 \in S^1 \subset \CC$. Then there is an isomorphism $\pio\bs(S^1, 1) \cong (\ZZ, +, 0)$ sending $u$ to $1 \in \ZZ$. \end{theorem*} \begin{proof} We know $p : \RR \to S^1$, $t \mapsto e^{2\pi i t}$ is a \gls{covmap}. $\RR$ is \gls{contractible} so \gls{simpconn}. So this is a \gls{unicov}. Hence \[ l : \pio\bs(S^1, 1) \stackrel{\sim}{\to} p^{-1}(1) = \ZZ \subset \RR \] is a bijection. To compute $l^{-1}(m)$ we can take $\tilde{u}_m : I \to \RR$, $t \mapsto mt$, so $u_m = p \circ \tilde{u}_m$ is a loop in $S^1$. Take $\tilde{x}_0 = 0 \in \ZZ$. \begin{center} \includegraphics[width=0.6\linewidth]{images/4ca1deeccceb4a0b.png} \end{center} So \begin{align*} n * m &= \text{the end point of the \gls{lift} of $u_m$ starting at $n$} \\ &= (t \mapsto n + mt)|_{t = 1} \\ n + m \end{align*} So $* = +$. \end{proof} \end{flashcard} \begin{flashcard}[no-retraction-mapping-thm] \begin{theorem*} The disc $D^2$ does not \gls{retract} to its boundary $S^1$. \end{theorem*} \begin{proof} \cloze{Suppose $r : D^2 \to S^1$ is a \glsref[retract]{retraction}, $i : S^1 \hookrightarrow D^2$, so $r \circ i = \id_{S^1}$: \[ \id : \ub{\pio\bs(S^1, 1)}_{\cong \ZZ} \stackrel{\ps i}{\to} \ub{\pio\bs(D^2, 1)}_{\cong \{e\}} \stackrel{\ps r}{\to} \ub{\pio\bs(S^1, 1)}_{\cong \ZZ} \] This is clearly not possible, so $r$ does not exist.} \end{proof} \end{flashcard} \begin{flashcard}[brouwer-fp-thm] \begin{corollary*}[Brouwer fixed point theorem] \cloze{Any map $f : D^2 \to D^2$ has a fixed point.} \end{corollary*} \begin{proof} \cloze{Suppose not. Define $r : D^2 \to S^1$ as shown: \begin{center} \includegraphics[width=0.6\linewidth]{images/b1ff72c61c1d4702.png} \end{center} This would be a retraction onto the boundary, contradictin the previous theorem.} \end{proof} \end{flashcard}