%! TEX root = AlgT.tex % vim: tw=50 % 29/01/2024 11AM \begin{flashcard}[lift-defn] \begin{definition*}[Lift] \glsnoundefn{lift}{lift}{lifts} \cloze{Let $p : \tilde{X} \to X$ be a \gls{covmap}, $f : Y \to X$ be a \gls{map}. A \emph{lift} of $f$ along $p$ is a $\tilde{F} : Y \to \tilde{X}$ such that $p \circ \tilde{f} = f$. \[ \begin{tikzcd}[ampersand replacement=\&] \& \tilde{X} \ar[d, "p"] \\ Y \ar[ur, dashed, "\tilde{f}"] \ar[r, "f"] \& X \end{tikzcd} \] } \end{definition*} \end{flashcard} \begin{flashcard}[evenly-covered-defn] \begin{definition*}[Evenly-covered] \glsadjdefn{evencov}{evenly-covered}{set} \cloze{Given $p : \tilde{X} \to X$ a \gls{covmap}, we say that $U \subset X$ is evenly-covered by $\{V_\alpha : \alpha \in I\}$ if $p^{-1}(U) = \coprod_{\alpha \in I} V_\alpha$ and $p|_{V_\alpha} : V_\alpha \stackrel{\cong}{\to} U_\alpha$.} \end{definition*} \end{flashcard} \begin{flashcard}[uniqueness-of-lifts-lemma] \begin{lemma*}[Uniqueness of Lifts] \label{uniqueness_of_lifts} \cloze{If $\tilde{f}_0$ and $\tilde{f}_1$ are \glspl{lift} of $f : Y \to X$ along a \gls{covmap} $p : \tilde{X} \to X$ then \[ S \defeq \{ y \in Y \st \tilde{f}_0(y) = \tilde{f}_1(y) \} \] is both open and closed. In particular, if $Y$ is connected, then $S = \emptyset$ or $S = Y$.} \end{lemma*} \begin{proof} \cloze{First show $S$ is open. Let $s \in S$ and let $U \ni f(s)$ be an open neighbourhood which is \gls{evencov} ($p^{-1}(U) = \bigsqcup V_\alpha$). Now $\tilde{f}_0(s)$ and $\tilde{f}_1(s)$ agree so live in the same $V_\alpha$. Then on $N = \tilde{f}_0^{-1}(V_\alpha) \cap \tilde{f}_1^{-1}(V_\alpha)$ we have \[ p|_{V_\alpha} \circ \tilde{f}_0|_N = f|_N = p|_{V_\alpha} \circ \tilde{f}_1|_N ,\] but $p|_{V_\alpha}$ is a homeomorphism, so $\tilde{f}_0|_N = \tilde{f}_1|_N$. So $s \in N \subset S$, so $S$ is open. Now we show $S$ is closed. Let $y \in \ol{S}$ and $\tilde{f}_0(y) \neq \tilde{f}_1(y)$. Let $U \ni f(y)$ be an open neighbourhood that is \gls{evencov}. Then $\tilde{f}_0(y) \in V_\beta$ and $\tilde{f}_1(y) \in V_\gamma$ with $\beta \neq \gamma$ (as $\tilde{f}_0(y) \neq \tilde{f}_1(y)$). So $\tilde{f}_0^{-1}(V_\beta) \cap \tilde{f}_1^{-1}(V_\gamma)$ is an open set, containing $y \in \ol{S}$. By definition of closure, it intersects $S$. But then $V_\beta$ and $V_\gamma$ must intersect, contradiction.} \end{proof} \end{flashcard} \begin{flashcard}[homotopy-lifting-lemma] \begin{lemma*}[Homotopy lifting lemma] \label{homotopy_lifting_lemma} \cloze{Let $p : \tilde{X} \to X$ be a \gls{covmap}, $H : Y \times I \to X$ from $f_0$ to $f_1$, and $\tilde{f}_0$ be a \gls{lift} of $f_0$. Then there exists a \emph{unique} homotopy $\tilde{H} : Y \times I \to \tilde{X}$ such that: \begin{enumerate}[(i)] \item $\tilde{H}(\bullet, 0) = \tilde{f}_0(\bullet)$. \item $p \circ \tilde{H} = H$. \end{enumerate}} \end{lemma*} \begin{proof} \cloze{Let $\{U_\alpha\}_{\alpha \in I}$ be an open cover of $X$ by sets which are \gls{evencov}, i.e. $p^{-1}(U_\alpha) = \coprod_{\beta \in I_\alpha} V_\beta$ and $p|_{V_\beta} : V_\beta \stackrel{\cong}{\to} U_\alpha$. Now $\{H^{-1}(U_\alpha)\}$ is an open cover of $Y \times I$, and for each $y_0 \in Y$ it gives an open cover of $\{y_0\} \times I$. By the \nameref{lebesgue_number_lemma}, there is a $N = N(y_0)$ such that each path \[ H|_{\{y_0\} \times \left[ \frac{i}{N}, \frac{i + 1}{N} \right]} : \{y_0\} \times \left[ \frac{i}{N}, \frac{i + 1}{N} \right] \to X \] has image inside some $U_\alpha$. \begin{center} \includegraphics[width=0.6\linewidth]{images/d84b39865bb54297.png} \end{center} In fact, as $\{y_0\} \times I$ is compact, there is an open $W_{y_0} \ni y_0$ such that each $H\left(W_{y_0} \times \left[ \frac{i}{N}, \frac{i + 1}{N} \right]\right)$ lies in some $U_\alpha$. We can construct a lift $\tilde{H}|_{W_{y_0} \times I}$ as follows: \begin{enumerate}[(i)] \item $H|_{W_{y_0} \times \left[ 0, \frac{1}{N} \right]} \to U_\alpha \subset X$ and have $\tilde{f}_0 |_{W_{y_0}} : W_{y_0} \to \tilde{X}$ with image in some $V_\beta$ lying in $U_\alpha$. Define $\tilde{H}|_{W_{y_0} \times \left[ 0, \frac{1}{N} \right]} \stackrel{H|}{\to} U_\alpha \stackrel[\cong]{p|_{V_\beta}^{-1}}{\to} V_\beta \subset \tilde{X}$. \item Proceed in the same way, \glsref[lift]{lifting} $H|_{W_{y_0} \times \left[ \frac{1}{N}, \frac{2}{N} \right]}$ starting at $\tilde{H}|_{W_{y_0} \times \left\{ \frac{1}{N} \right\}}$ etc. \end{enumerate} At the end of this process, we get a $\tilde{H}|_{W_{y_0} \times I}$ \glsref[lift]{lifting} $H|_{W_{y_0} \times I}$ and extending $\tilde{f}_0$ at time $0$. We can do this for each $y_0 \in Y$, so it is enough to check that on \[ (W_{y_0} \times I) \cap (W_{y_1} \times I) = (W_{y_0} \cap W_{y_1}) \times I ,\] the two \glspl{lift} constructed agree. For a $y_2 \in W_{y_0} \cap W_{y_1}$, the two choices give \glspl{lift} of $H|_{\{y_2\} \times I}$ which agree with $\tilde{f}_0(y_2)$ at time $0$. By the \nameref{uniqueness_of_lifts}, these \glspl{lift} must agree on the whole of $\{y_2\} \times i$. So they agree.} \end{proof} \end{flashcard} \begin{flashcard}[path-lifting-coro] \begin{corollary*}[Path lifting] \label{path_lifting} \cloze{If $p : \tilde{X} \to X$ is a \gls{covmap}, then $\gamma : I \to X$ is a \gls{path} from $x_0$ to $x_1$, and $\tilde{x}_0 \in \tilde{X}$ such that $p(\tilde{x}_0) = x_0$. Then there is a unique \gls{path} $\tilde{\gamma} : I \to \tilde{X}$ such that $\tilde{\gamma}(0) = \tilde{x}_0$ and $p \circ \tilde{\gamma} = \gamma$.} \end{corollary*} \end{flashcard} \begin{flashcard}[homotopic-lifted-paths-coro] \begin{corollary*} Let $p : \tilde{X} \to X$ be a \gls{covmap}, $\gamma, \gamma' : I \to X$ be \glspl{path} from $x_0$ to $x_1$, and $\tilde{\gamma}, \tilde{\gamma}' : I \to \tilde{X}$ be their \glspl{lift} starting at $\tilde{x}_0 \in p^{-1}(x_0)$. If $\gamma \homotopic \gamma'$ as \glspl{path}, then $\tilde{\gamma} \homotopic \tilde{\gamma}'$ as \glspl{path}. In particular, $\tilde{\gamma}(1) = \tilde{\gamma}'(1)$. \end{corollary*} \begin{proof} \cloze{Let $H : I \times I \to X$ be a \gls{homotopy} from $\gamma$ to $\gamma'$ relative to endpoints. \begin{center} \includegraphics[width=0.6\linewidth]{images/f488f96ce9634d61.png} \end{center} \nameref{homotopy_lifting_lemma} gives a $\tilde{H} : I \times I \to \tilde{X}$, which is a \gls{homotopy} of \glspl{path}.} \end{proof} \end{flashcard} \begin{flashcard}[path-conn-covmap-coro] \begin{corollary*} Let $p : \tilde{X} \to X$ be a \gls{covmap} and $X$ be \gls{pathconn}. Then \cloze{the sets $p^{-1}(x)$ are all in bijection with each other.} \end{corollary*} \begin{proof} \cloze{Let $\gamma : I \to X$ be a \gls{path} from $x_0$ to $x_1$. Define \begin{align*} \gamma_* : p^{-1}(x_0) &\to p^{-1}(x_0) \\ y_0 &\mapsto \tilde{\gamma}(1) \end{align*} for $\tilde{\gamma}$ the \gls{lift} of $\gamma$ starting at $y_0$. Similarly $(\invpath \gamma)_* : p^{-1}(x_1) \to p^{-1}(x_0)$. Then \begin{align*} (\invpath \gamma)_* \gamma_*(y_0) &= \text{end point of the \gls{lift} of $\invpath\gamma \concat \gamma$ which starts at $y_0$} \\ &= \text{end point of $\constpath{y_0}$} \\ &= y_0 \qedhere \end{align*}} \end{proof} \end{flashcard}