%! TEX root = AlgT.tex % vim: tw=50 % 26/01/2024 11AM \begin{flashcard}[f-star-isomorphism-thm] \begin{theorem*} If $f : X \to Y$ is a \gls{homequivce}, $x_0 \in X$, then \[ \ps f : \pio(X, x_0) \to \pio(Y, f(x_0)) \] is an isomorphism. \end{theorem*} \begin{proof} Let $g ; Y \to X$ be a \gls{homotopy} inverse, $f \circ g \homotopic_H \id_Y$, $g \circ f \homotopic_{H'} \id_X$. Let $u' : I \to X$ be \[ u'(t) = H'(x_0, 1 - t) ,\] a \gls{path} from $x_0$ to $g \circ f(x_0)$. The previous lemma gives an isomorphism \[ \pathisom{u'} = \ps{(g \circ f)} \cdot \pio\bs(X, x_0) \stackrel{\ps f}{\leftrightarrow} \pio\bs(Y, f(x_0)) \stackrel{\ps g}{\twoheadrightarrow} \pio\bs(X_1, gf(x_0)) \] We want to show $\leftrightarrow$ is an isomorphism, and to do this it is enough to show $\twoheadrightarrow$ is injective. To show $\ps g$ is injective, consider $u(t) = H(g(x_0), 1 - t)$ and get an isomorphism \[ \pathisom u = \ps{(f \circ g)} \cdot \pio\bs(Y, f(x_0)) \stackrel{\ps g}{\hookrightarrow} \pio\bs(X, gf(x_0)) \stackrel{\ps f}{\twoheadrightarrow} \pio\bs(Y, fgf(x_0)) \] So $\ps g$ is injective, so the $\ps f$ above is $\ps{g^{-1}} \circ \pathisom{u'}$, an isomorphism. \end{proof} \end{flashcard} \begin{flashcard}[simply-connected-defn] \begin{definition*}[Simply connected] \glsadjdefn{simpconn}{simply-connected}{space} \cloze{A space $X$ is \emph{simply-connected} if it is \gls{pathconn} and $\pio\bs(X, x_0) = \{e\}$ for some (hence all) $x_0 \in X$.} \end{definition*} \end{flashcard} \begin{example*} A \gls{contractible} space is \gls{simpconn}. $X \homoteq \{*\}$, so $\piz(X)$ and $\pio\bs(X, x_0)$ are trivial. \end{example*} \begin{flashcard}[simply-connected-iff-lemma] \begin{lemma*} $X$ is \gls{simpconn} if and only if $\forall x_0, x_1 \in X$, there is a unique \gls{homotopy} class of \glspl{path} form $x_0$ to $x_1$. \end{lemma*} \begin{proof} \cloze{Let $X$ be \gls{simpconn}, and $x_0, x_1 \in X$. As $X$ is \gls{pathconn}, there \emph{exists} a \gls{path} from $x_0$ to $x_1$. If $\gamma, \gamma'$ are two such \glspl{path}, then $\invpath \gamma \concat \gamma$ is a loop based at $x_1$, so $[\invpath \gamma \gamma'] \in \pio\bs(X, x_1) = \{e\}$, so $\invpath \gamma \concat \gamma' \homotopic c_{x_1}$ relative to $x_1$. So $\gamma' \homotopic \gamma \concat \invpath \gamma \concat \gamma' \homotopic \gamma \concat \constpath{x_1} \homotopic \gamma$ relative to end points. Conversely, if $X$ has the stated property then: \begin{enumerate}[(i)] \item It is \gls{pathconn}. \item Any loop based at $x_0$ is \gls{homotopic} to $\constpath{x_0}$ as loops. \end{enumerate} Hence $\pio\bs(X, x_0) = \{e\}$.} \end{proof} \end{flashcard} \subsubsection*{Covering Spaces} \begin{flashcard}[covering-map-defn] \begin{definition*}[Covering map] \glsnoundefn{covmap}{covering map}{covering maps} \glsnoundefn{covsp}{covering space}{covering spaces} \cloze{A \emph{covering map} $p : \tilde{X} \to X$ is a continuous \gls{map} such that for any $x \in X$ there exists an open neighbourhood $U \ni x$ such that \[ p^{-1}(U) = \coprod_{\alpha \in I} V_\alpha \] and $p|_{V_\alpha} \to U$ is a homeomorphism.} \end{definition*} \end{flashcard} \begin{example*} Let $S^1 \subset \CC$ be the unit complex numbers, and \begin{align*} p : \RR &\to S^1 \\ t &\mapsto e^{2\pi i t} &= (\cos(2\pi t), \sin(2\pi t)) \end{align*} Let $U_{y > 0} = \{x + iy \in S^1 \st y > 0\}$. Then \[ p^{-1}(U_{y > 0}) = \coprod_{j \in \ZZ} \left(j, j + \half\right) \] Now \begin{align*} p|_{\left( j, j + \half \right)} : \left( j, j + \half\right) &\to U_{y > 0} \\ j + \frac{\arccos(x)}{2\pi} &\mapsfrom x + iy \end{align*} Similarly for $U_{y < 0}$, $U_{x < 0}$, $U_{x > 0}$. So $p$ is a \gls{covmap}. \end{example*} \begin{example*} For some $n > 0$, let \begin{align*} p : S^1 &\to S^1 \\ z &\mapsto z^n \end{align*} Let $y \in S^1$ and consider $p^{-1}(y) = \{\text{$n$-th roots of $y$}\}$. Choosing a root $\xi$ and letting $\eta = e^{\frac{2\pi i}{n}}$, this can be written as \[ p^{-1}(y) = \{\xi, \eta \xi, \eta^2 \xi, \ldots, \eta^{n - 1}\xi\} \] Then $S^1 - \{y\}$ is open and \[ p^{-1}(S^1 - \{y\}) = S^1 - \{\xi, \eta \xi, \eta^2 \xi, \ldots, \eta^{n - 1} \xi\} \] $V_0 = \left\{z \in S^1 \st 0 < \arg \left( \frac{z}{\xi} \right) < \frac{2\pi}{n}\right\}$ and $V_i = \eta^i \cdot V_0$. Each $x \neq y \in S^1$ has a unique $n$-th root in each $V_i$, so $p|_{V_i} : V_i \to S^1 - \{y\}$ is a bijection: in fact a homeomorphism. \end{example*} \begin{example*} $S^2 \subset \RR^3$ be the unit vectors. Let \[ \RR \PP^2 = S^2 / x \sim -x .\] Have \begin{align*} p : S^2 &\to \RR \PP^2 \\ x &\mapsto [x] \end{align*} Let $V = \{(x, y, z) \in S^2 \st z \neq 0\}$, and $U = p(V)$. Then $p^{-1}(U) = V$ is open, so $U$ is open in $\RR \PP^2$. Now $p^{-1}(U) = V = V_{z > 0} \amalg V_{z < 0}$. \textbf{Claim:} $p|_{V_{z > 0}} : V_{z > 0} \to U$ and $p|_{V_{z > 0}}$ are homeomorphisms. \begin{proof} To construct an inverse $g : U \to V_{z > 0}$, use definition of quotient topology. Consider \begin{align*} t : V &\to V_{z > 0} \\ (x, y, z) &\mapsto (x, y, z) \text{ if $z \ge 0$} \\ &\mapsto (x, y, -z) \text{ if $z < 0$} \end{align*} a continuous map. Note $t$ descends to $\ol{t} : U \to V_{z > 0}$ as a map of sets, so a continuous map by definition of quotient toplogy. It is inverse to $p|_{V_{z > 0}}$. \end{proof} Do same with $x$-coordinate and $y$-coordinate to show that this is a \gls{covmap} of $\RR \PP^2$. \end{example*}