%! TEX root = AlgT.tex % vim: tw=50 % 24/01/2024 11AM \begin{flashcard}[path-group-prop] \begin{proposition*} Let $\gamma_0$ be a \gls{path} from $x_0$ to $x_1$, $\gamma_1$ a \gls{path} from $x_1$ to $x_2$ and $\gamma_2$ a \gls{path} from $x_2$ to $x_3$. Then \begin{enumerate}[(i)] \item \cloze{$\gamma_0 \concat \gamma_1) \concat \gamma_2 \hompath \gamma_0 \concat (\gamma_1 \concat \gamma_2)$ relative to $x_0$ and $x_3$.} \item \cloze{$\gamma_0 \concat \constpath{x_1} \hompath \gamma_0 \hompath \constpath{x_0} \concat \gamma_0$ relative to $x_0$ and $x_1$.} \item \cloze{$\gamma_0 \concat \invpath{\gamma_0} \hompath \constpath{x_0}$ relative to $x_0$ and $x_0$, $\invpath{\gamma_0} \concat \gamma_0 \hompath \constpath{x_1}$ relative to $x_1$ and $x_1$.} \end{enumerate} \end{proposition*} \begin{proof} We illustrate some of the cases (other cases are similar) using diagrams and the corresponding formulae: \begin{center} \includegraphics[width=0.6\linewidth]{images/36d8ca00a0164d84.png} \end{center} \[ H(s, t) = \begin{cases} \gamma_0 \left( \frac{4s}{t + 1} \right) & 0 \le s \le \frac{t + 1}{4} \\ \gamma_1 (4s - 1 - t) & \frac{t + 1}{4} \le s \le \frac{t + 2}{4} \\ \gamma_2 \left( 1 - \frac{4(1 - s)}{2 - t} \right) & \frac{t + 2}{4} \le s \le 1 \end{cases} \] \begin{center} \includegraphics[width=0.6\linewidth]{images/d61f4d81450548f4.png} \end{center} \[ H(s, t) = \begin{cases} \gamma_0 \left( \frac{2s}{t + 1} \right) & 0 \le s \le \frac{t + 1}{2} \\ x_1 & \frac{t + 1}{2} \le s \le 1 \end{cases} \] \begin{center} \includegraphics[width=0.6\linewidth]{images/41e9abbb7da448b0.png} \end{center} \[ H(s, t) = \begin{cases} \gamma_0(2s) & 0 \le s \le \frac{1 - t}{2} \\ \gamma_0(1 - t) & \frac{1 - t}{2} \le s \le \frac{1 + t}{2} \\ \gamma_0(2 - 2s) & \frac{1 + t}{2} \le s \le 1 \end{cases} \] \end{proof} \end{flashcard} \subsection{The fundamental group} \begin{flashcard}[fundamental-group-defn] \begin{definition*}[Fundamental group] \glsnoundefn{fundgp}{fundamental group}{fundamental groups} \glssymboldefn{pio}{$\pi_1$}{$\pi_1$} \cloze{Let $X$ be a space and $x_0 \in X$. Let $\pi_1(X, x_0)$ be the set of \glsref[hompath]{homotopy} classes of loops in $X$ starting and ending at $x_0$. Then the rule \[ [\gamma] \cdot [\gamma'] = [\gamma \concat \gamma'] \] makes $(\pi_1(X, x_0), \cdot, [\constpath{x_0}])$ into a group.} \end{definition*} \end{flashcard} \vspace{-1em} \textbf{Claim:} This definition does actually make $\pio(X, x_0)$ into a group. \begin{proof} Lemma from last lecture shows it is well-defined. Previous proposition gives the group axioms. \end{proof} \begin{flashcard}[based-space-defn] \begin{definition*}[Based space] \glssymboldefn{bs}{$(X, x_0)$}{$(X, x_0)$} \glsnoundefn{bsmap}{based map}{based maps} \cloze{A \emph{based space} is a space $X$ with a chosen point $x_0 \in X$ called the base point, $(X, x_0)$. \glsnoundefn{bshomotopy}{based homotopy}{based homotopies} A \emph{map of based spaces} $f : (X, x_0) \to (Y, y_0)$ is a \gls{map} $X \stackrel{f}{\to} Y$ such that $f(x_0) = y_0$. A \emph{based homotopy} is a \gls{homotopy} relative to $[x_0] \subset X$.} \end{definition*} \end{flashcard} \begin{flashcard}[based-map-associated-func-prop] \begin{proposition*} To a \gls{bsmap} $f : \bs(X, x_0) \to \bs(Y, y_0)$ there is associated a function $\pio(f) : \pio\bs(X, x_0) \to \pio\bs(Y, y_0)$ given by $\pio(f)([\gamma]) = [f \circ \gamma]$. It satisfies: \begin{enumerate}[(i)] \item \cloze{It is a group homomorphism.} \item \cloze{If $f$ is \glsref[bshomotopy]{based homotopic} to $f'$, $\pio(f) = \pio(f')$.} \item \cloze{If $\bs(A, a) \stackrel{h}{\to} \bs(B, b) \stackrel{k}{\to} \bs(C, c)$ are \glspl{bsmap}, then $\pio(k \circ h) = \pio(k) \circ \pio(h)$.} \item \cloze{$\pio(\id_X) = \id_{\pio\bs(X, x_0)}$.} \end{enumerate} \end{proposition*} \begin{proof} \cloze{ \begin{enumerate}[(i)] \item $f \circ \constpath{x_0} = \constpath{y_0}$ so $\pio(f)$ preserves identity element. $f \circ (\gamma \concat \gamma') = (f \circ \gamma) \cdot (f \circ \gamma')$, hence $\pio(f)$ is a homomorphism. \item[(ii) -- (iv)] Elementary. \end{enumerate} } \end{proof} \end{flashcard} \begin{flashcard}[f-star-notation] \begin{notation*} \glssymboldefn{ps}{$f_*$}{$f_*$} We will write $\cloze{\pio(f)} \eqdef f_*$. \end{notation*} \end{flashcard} \begin{flashcard}[change-of-base-hom-prop] \begin{proposition*} \glssymboldefn{pathisom}{$u_\#$}{$u_\#$} Let $u$ be a \gls{path} from $x_0$ to $x_1$ in $X$. It induces a group isomorphism \begin{align*} u_\# : \pio\bs(X, x_0) &\to \pio(X, x_1) \\ [\gamma] &\mapsto [u^{-1} \concat \gamma \concat u] \end{align*} satisfying \begin{enumerate}[(i)] \item \cloze{If $u \hompath u'$ as \glspl{path} then $\pathisom u = \pathisom{u'}$.} \item \cloze{$\pathisom{(\constpath{x_0})} = \id_{\pio\bs(X, x_0)}$.} \item \cloze{If $v$ is a \gls{path} from $x_1$ to $x_2$ then $\pathisom{(u \concat v)} = \pathisom v \concat \pathisom u$.} \item \cloze{If $f : X \to Y$ sends $x_0$ to $y_0$ and $x_1$ to $y_1$, then \[ \begin{tikzcd}[ampersand replacement=\&] \pio\bs(X, x_0) \ar[r, "f"] \ar[d, "\pathisom u"] \&\pio\bs(Y, y_0) \ar[d, "\pathisom{(f \circ u)}"] \\ \pio\bs(X, x_1) \ar[r, "\ps f"] \&\pio\bs(Y, y_1) \end{tikzcd} \] ``this diagram commutes'', i.e. \[ \pathisom{(f \circ u)} \circ \ps f = \ps f \circ \pathisom u \]} \item \cloze{If $u$ is a \gls{path} from $x_0$ to $x_0$, then $\pathisom u$ is conjugation by $[u] \in \pio\bs(X, x_0)$.} \end{enumerate} \end{proposition*} \begin{proof} \cloze{$\pathisom u$ is a group homomorphism via \begin{align*} \pathisom u([\gamma]) \cdot \pathisom u([\gamma']) &= [a^{-1} \concat \gamma \concat a] \cdot [a^{-1} \concat \gamma' \concat u] \\ &= [u^{-1} \concat \gamma \concat u \concat u^{-1} \concat \gamma' \concat u] \\ &= [u^{-1} \concat \gamma \concat \gamma' \concat u] \\ &= \pathisom u([\gamma] \cdot [\gamma']) \end{align*} It is an isomorphism as $\pathisom{(u^{-1})}$ is an inverse. For (iv), \begin{align*} (\pathisom{(f \circ u)} \circ \ps f)([\gamma]) &= \pathisom{(f \circ u)} ([f \circ \gamma]) \\ &= [(f \circ u)^{-1} \concat f \circ \gamma \concat f \circ u] \\ &= [f \circ (u^{-1} \concat \gamma \concat u)] \\ &= \ps f([u^{-1} \concat \gamma \concat u]) \\ &= (\ps f \circ \pathisom u)([\gamma]) \qedhere \end{align*} } \end{proof} \end{flashcard} \begin{lemma*} If $H : X \times I \to Y$ is a \gls{homotopy} fomr $f$ to $g$ and $x_0 \in X$ is a base point \glsref[bsmap]{base point}, then $u = H(x_0, \bullet) : I \to Y$ is a \gls{path} from $f(x_0)$ to $g(x_0)$. Then \[ \begin{tikzcd} \pio\bs(X, x_0) \ar[r, "\ps f"] \ar[d, "\ps g"] &\pio\bs(Y, f(x_0)) \ar[ld, "\pathisom u"] \\ \pio\bs(Y, g(x_0)) \end{tikzcd} \] commutes (i.e. $\pathisom u \circ \ps f = \ps g$). \end{lemma*} \begin{proof} $I \times I \stackrel{\gamma \times \id}{\to} X \times I \stackrel{H}{\to} Y$. \begin{center} \includegraphics[width=0.3\linewidth]{images/2ddaa2621f2b43ce.png} \end{center} Want $g \circ \gamma \homotopic \invpath u \concat (f \circ \gamma) \concat u$ as loops. The top edge in the square is \gls{homotopic} to the concatenation of the other three edge. Applying $H \circ (\gamma \times \id_I)$ gives the required \gls{homotopy}. \end{proof}