%! TEX root = AlgT.tex % vim: tw=50 % 13/03/2024 11AM \begin{flashcard}[nuk-inverse-lemma] \begin{lemma*} There is a \gls{cmap} $s_\bullet : C_\bullet(K) \to C_\bullet(K\subdiv)$ given by sending a \gls{simp} $\sigma$ to an appropriate linear combination of the \glspl{simp} of $K\subdiv$ which compose $\sigma$. On $H_*$ it induces $\nuk_K^{-1} : \Hgp_n(K) \simto \Hgp_n(K\subdiv)$. \end{lemma*} \begin{proof} \cloze{Start by $s_0([v_0]) = [\bcentre{v_0}]$. Supposing $s_0, \ldots, s_{n - 1}$ have been defined and satisfy $d_i \circ s_i = s_{i - 1} \circ d_i$ for all $i < n$. Then define $s_n(\sigma) = [\bcentre{\sigma}, s_{n - 1} d_n(\sigma)]$, interpreted linearly in the second variable. Example: $s_1([v_0, v_1]) = [\bcentre{\simplex}, \bcentre{\simplex} - \bcentre{\simplex}] = [\bcentre{\simplex}, \bcentre{\simplex}] - [\bcentre{\simplex}, \bcentre{\simplex}]$. We calculate \begin{align*} d_n s_n([v_0, \ldots, v_n]) &= [\bcentre{\simplex}, s_{n - 1} d_n[v_0, \ldots, v_n]] \\ &= s_{n - 1} d_n [v_0, \ldots, v_n] - [\bcentre{\simplex}, \ub{d_{n - 1} s_{n - 1}}_{s_{n - 2} d_{n - 1}} d_n [v_0, \ldots, v_n]] \\ &= s_{n - 1} d_n [v_0, \ldots, v_n] \end{align*} so $d_n s_n = s_{n - 1} d_n$. So this $s_\bullet$ is a \gls{cmap}. Let $\prec$ be an ordering of $\vset K$ and $a : K \cong \vset{K\subdiv} \to \vset K$ send $\bcentre \sigma$ to the smallest \gls{vert} of $\sigma$ with respect to $\prec$. This is some \gls{simpapprox} to $\id$. Now $a_0 \circ s_0 = \id$. Suppose $a_i \circ s_i = \id$ for $i < n$. If $[v_0, \ldots, v_n]$, $v_0 \prec \cdots \prec v_n$ then \begin{align*} a_n s_n([v_0, \ldots, v_n]) &= a_n ([\bcentre{\simplex}, s_{n - 1} d_n [v_0, \ldots, v_n]]) \\ &= [v_0, \ub{a_{n - 1} s_{n - 1}}_{\id} d_n [v_0, \ldots, v_n]] \\ &= [v_0, d_n[v_0, \ldots, v_n]] \\ &= [v_0, \simplex - \sum \pm \simplex] \\ &= [v_0, \ldots, v_n] \end{align*} So $a_* \circ s_* = \id$, so $\nuk \circ s_* = \id$, so $s_* = \nuk_K^{-1}$.} \end{proof} \end{flashcard} \begin{flashcard}[lefschetz-fp-thm] \begin{theorem*}[Lefschetz Fixed Point Theorem] \cloze{Let $f : X \to X$ be a \gls{map} of \glspl{polyh}. If $\lef(f) \neq 0$ then $f$ has a fixed point.} \end{theorem*} \begin{proof} \cloze{Let $X \cong \polyh|K| \subset \RR^N$. Suppose $f$ does not have a fixed point. Let \[ \delta \defeq \inf\{|x - f(x)|, x \in X\} .\] As $X$ is compact, $\delta > 0$. Let$K$ be a \gls{triang} of $X$ with $\mesh(K) < \frac{\delta}{2}$, and choose a \gls{simpapprox} $g : K\rsubdiv r \to K$ to $f$. For $v \in \vset {K\rsubdiv r}$ we have $f(v) \in f(\St_{K\rsubdiv r}(v)) \subset \St_K(g(v))$, so $|f(v) - g(v)| < \frac{\delta}{2}$. But $|f(v) - v| > \delta$, so $|g(v) - v| > \frac{\delta}{2}$. So if $v \in \sigma \in K$, then $g(v) \notin \sigma$. The map $f_*$ is defined as $g_* \circ \nuk_{K, r}^{-1} = g_* \circ s_*^{(r)}$ where $s_*^{(r)}$ is the $r$-fold iteration of the map in the previous Lemma. So \begin{align*} \lef(f) &\defeq \sum_i (-1)^i \Trace(f_* : H_i(X) \to H_i(X)) \\ &= \sum_i (-1)^i \Trace(g_i \circ s_i^{(r)} : C_i(K) \to C_i(K)) \end{align*} by last lecture. If $\sigma \in K$ is an \nsimp{i}, then $s_i^{(r)}(\sigma)$ is a sum of \glspl{simp} inside $\sigma$, so $g_i s_i^{(r)}(\sigma)$ is a sum of \glspl{simp} not including $\sigma$. So the matrix for $g_i \circ s_i^{(r)}$ has zeroes on the diagonal, so the trace is $0$.} \end{proof} \end{flashcard} \begin{example*} If $X$ is a \gls{contractible} \gls{polyh}, then \[ \Hgp_n(X) = \begin{cases} \ZZ & n = 0 \\ 0 & \text{otherwise} \end{cases} \] so any $f : X \to X$ has $\lef(f) = 1$, so has a fixed point. \end{example*} \begin{example*} $S_1 = \RR\PP^2$ has \[ \Hgp_n(\RR\PP^2) = \begin{cases} \ZZ & n = 0 \\ \ZZ / 2\ZZ & n = 1 \\ 0 & \text{otherwise} \end{cases} \] so \[ \Hqq_n(\RR\PP^2; \QQ) = \begin{cases} \QQ & n = 0 \\ 0 & \text{otherwise} \end{cases} \] so any $f : \RR\PP^2 \to \RR\PP^2$ has $\lef(f) = 1$, so has a fixed point. \end{example*} \begin{example*} Let $G$ be a topological group which is path-connected and non-trivial. Suppose it is a polyhedron. If $g \neq 1 \in G$, then $g \cdot \bullet : G \to G$ has no fixed points, so \[ 0 = L(g \cdot \bullet) = L(1 \cdot \bullet) = L(\id) = \eul(G) \] as $g \cdot \bullet \homotopic 1 \cdot \bullet$ as $G$ is path-connected. This can be used to show that certain topological spaces cannot be given a topological group structure. \end{example*} \begin{example*} Consider $S_3$, which is the connected sum of three copies of $\RR\PP^2$. Let $f : S_3 \to S_3$ be such that $f \circ f = \id$. We have \[ \Hqq_n(S_3; \QQ) \cong \begin{cases} \QQ & n = 0 \\ \QQ^2 & n = 1 \\ 0 & \text{otherwise} \end{cases} \] so $\lef(f) = 1 - \Trace(f_* : \Hqq_1(S_3; \QQ) \to \Hqq_1(S_3; \QQ))$. As $f \circ f = \id$, $f_* \circ f_* = \id$. So $f_* : \Hqq_1(S_3; \QQ) \to \Hqq_1(S_3, \QQ)$ squares to $\id$. So its minimal polynomial divides $x^2 - 1$, so it is diagonalisable with eigenvalues $\pm 1$. So its trace is one of $\{2, 0, -2\}$. So $\lef(f) \in \{-1, 1, 3\}$, none of which are $0$, so $f$ has a fixed point. \end{example*}