%! TEX root = AlgT.tex % vim: tw=50 % 08/03/2024 11AM \subsection{Homology of spheres} \begin{flashcard}[sphere-homology-lemma] \begin{lemma*} The sphere $S^{n - 1}$ is triangulable, and for $n - 1 \ge 1$ we have \[ H_i(S^{n - 1}) \cong \begin{cases} \ZZ & i = 0, n - 1 \\ 0 & \text{otherwise} \end{cases} \] \end{lemma*} \begin{proof} \cloze{$\partial D^n$ has polyhedron homeomorphic to $S^{n - 1}$, and we calculated its $\Hgp_\bullet$.} \end{proof} \end{flashcard} \begin{flashcard}[brouwer-higher-dimension-thm] \begin{theorem*}[Brouwer (higher dimensions)] \phantom{} \cloze{ \begin{enumerate}[(i)] \item There is no retraction of $D^n$ to $\partial D^n = S^{n - 1}$. \item Any $f : D^n \to D^n$ has a fixed point. \end{enumerate} } \end{theorem*} \begin{proof} \cloze{(i) $\implies$ (ii) by the same argument as the case $n = 2$. Let $r = D^n \to S^{n - 1}$ be a retraction, and consider $\id_{S^{n - 1}} = r \circ i$. Then \[ \id = (r \circ i)_* : \ub{\Hgp_{n - 1}(S^{n - 1})}_{\cong \ZZ} \stackrel{i_*}{\to} \ub{\Hgp_{n - 1}(D^n)}_{\cong \H_{n - 1}(\{*\}) = 0} \stackrel{r_*}{\to} \ub{\Hgp_{n - 1}(S^{n - 1})}_{\cong \ZZ} \] for $n - 1 > 0$.} \end{proof} \end{flashcard} We have seen a different triangulation of $S^n$, via the \gls{simpcomp} $K$ in $\RR^{n + 1}$ with \glspl{simp} $\simplex<\pm e_1, \ldots, \pm e_{n + 1}>$ and all their faces. We must have \[ \Hgp_i(K) \cong \begin{cases} \ZZ & i = 0, n \\ 0 & \text{otherwise} \end{cases} \] by independence of triangulation. \begin{lemma*} The element \[ x = \sum_{\bf{a} \in \{1, -1\}^{n + 1}} a_1 a_2 \cdots a_{n + 1} [a_1 e_1, a_2 e_2, \ldots, a_{n + 1} e_{n + 1}] \] is a cycle, and generates $\Hgp_n(K) \cong \ZZ$. \end{lemma*} \begin{proof} When we apply $d_n$ to $x$, the \gls{simp} \[ [a_1 e_1, \ldots, \skipel{a_i e_i}, \ldots, a_{n + 1} e_{n + 1}] \] shows up twice, corresponding to $a_i = +1$, $a_i = -1$. So the coefficients cancel out (so $x$ is a cycle). It generates as it is clearly not divisible in $\Cgp_n(K)$ (coefficients are $\pm 1$). \end{proof} The reflection $r_i : \RR^{n + 1} \to \RR^{n + 1}$ in the $i$-th coordinate is \begin{align*} (r_i)_*(x) &= \sum a_1 \cdots a_{n + 1} [a_1 e_1, \ldots, a_{i - 1} e_{i - 1}, -a_i e_i, a_{i + 1} e_{i + 1}, \ldots, a_{n + 1} e_{n + 1}] \\ &= -x \end{align*} So $(r_i)_* : \Hgp_n(S^n) \to \Hgp_n(S^n)$ is multiplication by $-1$. The antipodal map $a : S^n \to S^n$ is $r_1 r_2 \cdots r_{n + 1}$. So \[ a_* : \Hgp_n(S^n) \to \Hgp_n(S^n) \] is multiplication by $(-1)^{n + 1}$. \begin{corollary*} If $n$ is even, then $a : S^n \to S^n$ is not \gls{homotopic} to $\id$. \end{corollary*} \subsection{Homology of surfaces} \subsubsection*{Example} \begin{center} \includegraphics[width=0.4\linewidth]{images/021361f67ca74c8f.png} \includegraphics[width=0.4\linewidth]{images/07e6d7591d9a4591.png} \end{center} Homology of $K$: consider \begin{center} \includegraphics[width=0.2\linewidth]{images/053d929af9564e2e.png} \end{center} Then $\polyh|W| \hookrightarrow \polyh|K|$ is a homotopy equivalence. Apply Mayer-Vietoris to \begin{center} \includegraphics[width=0.2\linewidth]{images/9d6524ac6c7446b2.png} \end{center} to obtain \[ \Hgp_0(K) = \ZZ\{[1]\}, \qquad \Hgp_1(K) = \ZZ\{a, b\} \] where $a = [1, 2] + [2, 3] + [3, 1]$ and $b = [1, 4] + [4, 5] + [5, 1]$. Note: $r = [5, 6] + [6, 9] + [9, 5] \sim a + b - a - b = 0$. Homology of $K_g$: can decompose $K_g = K_{g - 1} \cup K$, where $K_{g - 1} \cap K = \ssimp^1$. Mayer-Vietoris gives \begin{center} \includegraphics[width=0.6\linewidth]{images/910fa29cf58943e7.png} \end{center} so $\Hgp_0(K_g) = \ZZ\{\text{a vertex}\}$, $\Hgp_1(K_g) = \ZZ^{2g}$, $H_2(K_g) = 0$. Note $L = \partial K_g$ is the cycle $r_1 + r_2 + \cdots + r_g = 0$. Let $\Sigma_g = \polyh|K_g| \bigcup_{\polyh|L|} \polyh|CL|$. Homology of $K_g \cup CL$: Apply Mayer-Vietoris, using $K_g \cap CL = L$, a a triangulation of $S^1$. \begin{center} \includegraphics[width=0.6\linewidth]{images/13151fb0c1ab44a5.png} \end{center} so $\Hgp_0(K_g \cup CL) \cong \ZZ$, $\Hgp_1(K_g \cup CL) \cong \ZZ^{2g}$, $\Hgp_2(K_g \cup CL) \cong \ZZ$. So this is the homology of $\Sigma_g$, so in particular, given different values of $g$, the $\Sigma_g$ will be non-homeomorphic, since their homologies will differ.