%! TEX root = AlgT.tex % vim: tw=50 % 06/03/2024 11AM \begin{flashcard}[nuk-notation] \begin{notation*} So: if $a : K\subdiv \to K$ is a \gls{simpapprox} to $\id$, then $\cmapstar a : \Hgp_n(K\subdiv) \to \Hgp_n(K)$ is an isomorphism, and does not actually depend on $a$. \glssymboldefn{nuk}{$\nu_K$}{$\nu_K$} Call it $\nu_K : \Hgp_n(K\subdiv) \simto \Hgp_n(K)$. Write \[ \nuk_{K, r} \defeq \cloze{\nuk_{K\rsubdiv{r - 1}} \circ \cdots \circ \nuk_{K\subdiv} \circ \nuk_K : \Hgp_n(K\rsubdiv r) \simto \Hgp_n(K)} \] and \[ \nuk_{K, r, s} \defeq \cloze{\nu_{K\rsubdiv{r - 1}} \circ \cdots \circ \nuk_{K\rsubdiv s} : \Hgp_n(K\rsubdiv r) \simto \Hgp_n(K\rsubdiv s)} .\] \end{notation*} \end{flashcard} \begin{flashcard}[cont-assoc-hom-prop] \begin{proposition*} To each continuous $f : \polyh|K| \to \polyh|L|$ there is an associated homomorphism $f_* : \Hgp_n(K) \to \Hgp_n(L)$ given by $f_* = s_* \circ \nuk_{K, r}^{-1}$, where $s : K\rsubdiv r \to L$ is a \gls{simpapprox} to $f$ (which exsists for some $r \gg 0$). \begin{enumerate}[(i)] \item This does not depend on the choices of $s$ and $r$. \item If $g : \polyh|M| \to \polyh|K|$ is another map, then $(f \circ g)_* = f_* \circ g_*$. \end{enumerate} \end{proposition*} \begin{proof} \cloze{For (i) let $s : K\rsubdiv r \to L$ and $t : K\rsubdiv q \to L$ be \gls{simpapprox} to $f$, with $r \ge q$. Let $a : K\rsubdiv r \to K\rsubdiv q$ be a \gls{simpapprox} to $\id$. Now $t \circ a, s : K\rsubdiv K \to L$ are both \gls{simpapprox} to $f$, so they are \gls{contig}, so $\cmapstar s = \cmapstar{(t \circ a)} = \cmapstar t \circ \cmapstar a$. But $\cmapstar a = \nuk_{K, r, q}$, so \[ \cmapstar s \circ \nuk_{K, r}^{-1} = \cmapstar t \circ \nuk_{K, r, q} \circ \nuk_{K, r}^{-1} = \cmapstar t \circ \nuk_{K, q}^{-1} .\] For (ii), let $s : K\rsubdiv r \to L$ approximate $f$, and let $t : M\rsubdiv q \to K\rsubdiv r$ approximate $g$. Then $s \circ t$ approximates $f \circ g$, and \[ (f \circ g)_* = (s \circ t)_* \circ \nuk_{m, q}^{-1} = (s_* \circ \nuk_{K, r}^{-1}) \circ (\nuk_{K, r} \circ t_* \circ \nuk_{m, q}^{-1}) = f_* \circ g_* \qedhere \]} \end{proof} \end{flashcard} \begin{flashcard}[homeo-hom-simplicial-complexes-coro] \begin{corollary*} If $f : \polyh|K| \to \polyh|L|$ is a homeomorphism, then $f_* : \Hgp_n(K) \to \Hgp_n(L)$ is an isomorphism. \end{corollary*} \begin{proof} \cloze{$\id = (f \circ f^{-1})_* = f_* \circ (f^{-1})_*$ and $\id = (f^{-1} \circ f)_* = (f^{-1})_* \circ f_*$, so $f_*$ is invertible.} \end{proof} \end{flashcard} \begin{flashcard}[simpcomp-eps-lemma] \begin{lemma*} For a \gls{simpcomp} $L$ in $\RR^m$, there is a $\eps = \eps(L) > 0$ such that \cloze{if $f, g : \polyh|K| \to \polyh|L|$ satisfy $|f(x) - g(x)| < \eps ~\forall x \in \polyh|K|$ then $f_* = g_* : \Hgp_n(K) \to \Hgp_n(L)$.} \end{lemma*} \begin{proof} \cloze{The $\{\St_L(w)\}_{w \in \vset L}$ give an open cover of $\polyh|L|$, so by the \nameref{lebesgue_number_lemma}, there exists $\eps > 0$ such that each $B_{2\eps}(x)$ lies in some $\St_L(w)$. Let $f, g : \polyh|K| \to \polyh|L|$ be as in the statement, using this $\eps$. Then $\{f^{-1}(B_\eps(y))\}_{y \in \polyh|L|}$ is an open cover of $\polyh|K|$, so there is a $\delta > 0$ such that each $f(B_\delta(x)) \subseteq B_\eps(y)$. Then also $g(B_\delta(x)) \subseteq B_{2\eps}(y)$. Let $r \gg 0$ such that $\mesh(K\rsubdiv r) < \half \delta$. Then for each $v \in \vset {K\rsubdiv r}$, the diameter of $\St_{K\rsubdiv r}(v)$ is $<\delta$. So $f(\St_{K\rsubdiv r}(v))$, $g(\St_{K\rsubdiv r}(v))$ lie in the common $B_{2\eps}(w) \subseteq \St_L(w)$. Let $s(v) = w$. Then $s$ is a \gls{simpapprox} to both $f$ and $g$. So $f_* = s_* \circ \nuk{K, r}^{-1} = g_*$.} \end{proof} \end{flashcard} \begin{flashcard}[homotopic-same-homology-thm] \begin{theorem*} If $f \homotopic g : \polyh|K| \to \polyh|L|$, then $f_* = g_* : \Hgp_n(K) \to \Hgp_n(L)$. \end{theorem*} \begin{proof} \cloze{Let $H : \polyh|K| \times I \to \polyh|L|$ be a \gls{homotopy} between them. As $\polyh|K| \times I$ is compact, $H$ is uniformly continuous. For the $\eps = \eps(L) > 0$ from the lemma, there is a $\delta > 0$ such that $|s - t| < \delta$ $\implies$ $|H(x, s) - H(x, t) < \eps$ for all $x \in \polyh|K|$. Choose \[ 0 = t_0 < t_1 < \cdots < t_k = 1 \] such that $|t_{i + 1} - t_i| < \delta$. Then let $f_i(x) \defeq H(x, t_i)$. Note $f_0 = f$, $f_k = g$. Also, $f_i$ and $f_{i + 1}$ are $\eps$-close. So $(f_i)_* = (f_{i + 1})_*$, and so $f_* = g_*$.} \end{proof} \end{flashcard} \begin{flashcard}[h-triangulation-defn] \begin{definition*}[$h$-triangulation] \glsnoundefn{htri}{$h$-triangulation}{$h$-triangulations} \glsadjdefn{htrid}{$h$-triangulated}{space} \glsadjdefn{htrible}{$h$-triangulable}{space} \cloze{A \emph{$h$-triangulation} of a space $X$ is a \gls{simpcomp} $K$ and a \gls{homequivce} $g : \polyh|K| \to X$. We define $\Hgp_n(X) \defeq \Hgp_n(K)$.} \end{definition*} \end{flashcard} \begin{flashcard}[htri-choice-indep-lemma] \begin{lemma*} The homology of a \gls{htrid} space does not depend on the choice of \gls{htri}. \end{lemma*} \begin{proof} \cloze{Let $\ol{g} : \polyh|\ol{K}| \to X$ be another \gls{htri}. Then consider \[ \polyh|\ol{K}| \stackrel{\ol{g}}{\to} \to \polyh|K| ,\] where the second arrow is a homotopy inverse of $g$. The composition is a \gls{homequivce}, so induces an isomorphism $\Hgp_n(\ol{K}) \simto \Hgp_n(K)$. If $g : \polyh|K| \to X$, $\ol{G} : \polyh|\ol{K}| \to \ol{X}$ are \glspl{htri} with homotopy inverses $f$ and $\ol{f}$, and $h : X \to \ol{X}$ is a map, then \[ \begin{tikzcd}[ampersand replacement=\&] \Hgp_n(X) \ar[r] \ar[equal]{d} \& \Hgp_n(\ol{X}) \ar[equal]{d} \\ \Hgp_n(K) \ar[r, "(\ol{f} \circ h \circ g)_*"] \& \Hgp_n(\ol{K}) \end{tikzcd} \] defines induced maps on homology for any map of \gls{htrible} spaces.} \end{proof} \end{flashcard}