%! TEX root = AlgT.tex % vim: tw=50 % 22/01/2024 11AM \begin{flashcard}[homoteq-basics-prop] \begin{proposition*} We have \begin{enumerate}[(i)] \item $X \homoteq X$, \item If $X \homoteq Y$ then $Y \homoteq X$, \item If $X \homoteq Y$ and $Y \homoteq Z$, then $X \homoteq Z$. \end{enumerate} \end{proposition*} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item \cloze{Take $f = g = \id_X$, and constant \glspl{homotopy}.} \item \cloze{Given $f : X \to Y$, $g : Y \to X$ with $f \circ g \homotopic_H \id_Y$, $g \circ f \homotopic_G \id_X$, this is the same data as a $Y \homoteq X$.} \item \cloze{Suppose we have \glspl{map} $f : X \to Y$, $f' : Y \to Z$, $g : Y \to X$, $g' : Z \to Y$, with $f \circ g \homotopic \id_X$, $f' \circ g' \homotopic \id_X$, $f' \circ g' \homotopic \id_Z$, $g' \circ f' \homotopic \id_Y$. Consider $f' \circ f : X \to Z$, $g \circ g' : Z \to X$. Then \[ (g \circ g') \circ (f' \circ f) = g \circ (g' \circ f') \circ f \homotopic g \circ \id_Y \circ f = g \circ f \homotopic \id_X ,\] and the other composition is similar.} \qedhere \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[retraction-defn] \begin{definition*}[Retraction] \glsverbdefn{retract}{retract}{retract} \cloze{If $i : A \to X$ is the inclusion of a subspace, then \begin{enumerate}[(i)] \item A \emph{retraction} is a $r : X \to A$ such that $r \circ i = \id_A$. \item A \emph{deformation} retraction is a retraction such that also $i \circ r \homotopic \id_X$. \end{enumerate} } \end{definition*} \end{flashcard} \subsubsection*{Paths} \begin{flashcard}[path-defn] \begin{definition*}[Path] \glsnoundefn{path}{path}{paths} \cloze{For a space $X$ and points $x_0, x_1 \in X$, a path from $x_0$ to $x_1$ is a \gls{map} $\gamma : I = [0, 1] \to X$ such that $\gamma(0) = x_0$, $\gamma(1) = x_1$. If $x_0 = x_1$, call $\gamma$ a \emph{loop} based at $x_0$.} \end{definition*} \end{flashcard} \begin{flashcard}[concatenation-notation] \begin{notation*}[Concatenation] \glssymboldefn{concat}{$\cdot$}{$\cdot$} \cloze{If $\gamma$ is a \gls{path} from $x_0$ to $x_1$, and $\gamma'$ is a path from $x_1$ to $x_2$, then we can form the \emph{concatenation} $\gamma \cdot \gamma' : I \to X$ via \[ (\gamma \cdot \gamma')(t) = \begin{cases} \gamma(2t) & 0 \le t \le \half \\ \gamma'(2t + 1) & \half \le t \le 1 \end{cases} \] (continuous by the \nameref{gluing_lemma}). This is a \gls{path} from $x_0$ to $x_2$.} \end{notation*} \end{flashcard} \begin{flashcard}[inverse-path-notation] \begin{notation*}[Inverse path] \glssymboldefn{inverse_path}{$\gamma^{-1}$}{$\gamma^{-1}$} \cloze{Define the \emph{inverse} $\gamma^{-1} : I \to X$ via \[ \gamma^{-1}(t) = \gamma(1 - t) .\] This is a \gls{path} from $x_1$ to $x_0$.} \end{notation*} \end{flashcard} \begin{flashcard}[constant-path-notation] \begin{notation*}[Constant path] \glssymboldefn{constpath}{$c_{x_0}$}{$c_{x_0}$} \cloze{Define the \emph{constant path} $c_{x_0} : I \to X$ via $c_{x_0}(t) = x_0$.} \end{notation*} \end{flashcard} \begin{flashcard}[path-components-defn] \begin{definition*}[Path components] \glssymboldefn{piz}{$\pi_0$}{$\pi_0$} \glsadjdefn{pathconn}{path-connected}{space} \cloze{ Using the above, we can define an equivalence relation $\sim$ on $X$ via \[ X_0 \sim X_1 \iff \text{there exists a \gls{path} $\gamma$ from $x_0$ to $x_1$} \] The equivalence classes of $\sim$ are called \emph{path components} of $X$. Say $X$ is \emph{path-connected} if there is only $1$ equivalence class. Let $\pi_0(X) \defeq X / \sim$.} \end{definition*} \end{flashcard} \begin{flashcard}[locally-path-connected-defn] \begin{definition*}[Locally path-connected] \glsadjdefn{locpathconn}{locally path-connected}{space} \cloze{We say that a space $X$ is \emph{locally path-connected} if for every $x \in X$, and neighbourhood $U \ni x$, there exists a smaller neighbourhood $U \supset V \ni x$ such that $V$ is \gls{pathconn}.} \end{definition*} \end{flashcard} \begin{flashcard}[pi0-function-quotient-prop] \begin{proposition*} For a \gls{map} $f : X \to Y$, there is a well-defined function $\piz(f) : \cloze{\piz(X) \to \piz(Y)}$ given by $\cloze{\piz(f)([x]) = [f(x)]}$. Furthermore: \begin{enumerate}[(i)] \item \cloze{If $f \homotopic g$ then $\piz(f) = \piz(g)$.} \item \cloze{If $A \stackrel{h}{\to} B \stackrel{k}{\to} C$ then $\piz(k \circ h) = \piz(k) \circ \piz(h)$.} \item \cloze{$\piz(\id_X) = \id_{\piz(X)}$.} \end{enumerate} \end{proposition*} \begin{proof} To see well-defined, let $[x] = [x']$. Then there is a \gls{path} $\gamma$ from $x$ to $x'$. Then $f \circ \gamma : I \stackrel{\gamma}{\to} X \stackrel{f}{\to} Y$ is a \gls{path} for $f(x)$ to $f(x')$, so $[f(x)] = [f(x')]$. Properties (ii) and (iii) are immediate. For (i), let $H : X \times I \to Y$ be a \gls{homotopy} from $f$ to $g$. Now $H|_{\{x\} \times I} : \{x\} \times I \to Y$ is a \gls{path} from $f(x)$ to $g(x)$, so \[ \piz(f)([x]) = [f(x)] = [g(x)] = \piz(g)([x]) . \qedhere \] \end{proof} \end{flashcard} \begin{flashcard}[homoteq-piz-bijection-coro] \begin{corollary*} If $f : X \to Y$ is a \gls{homequivce}, then $\piz(f)$ \cloze{is a bijection.} \end{corollary*} \begin{proof} If $g : Y \to X$ is a \gls{homotopy} inverse, then \[ \piz(f) \circ \piz(g) = \piz(f \circ g) = \piz(\id_Y) = \id_{\piz(Y)} \] and $\piz(g) \circ \piz(f) = \id_{\piz(X)}$, so $\piz(f)$ is a bijection. \end{proof} \end{flashcard} \begin{example*} The space $\{-1, +1\}$ with the discrete topology is \emph{not} \gls{contractible}. This is because any \gls{path} in this space is constant, so \[ \piz(\{-1, +1\}) = \{-1, +1\} \] of cardinality $2$, so $\piz(\{*\}) = \{*\}$ has cardinality $1$. \end{example*} \begin{example*} The space $[-1, 1]$ does \emph{not} \gls{retract} onto $\{-1, +1\}$. Suppose it does. Then: \begin{center} \includegraphics[width=0.6\linewidth]{images/aa39bf94def84a65.png} \end{center} \end{example*} \begin{flashcard}[homotopic-paths-defn] \begin{definition*}[Homotopic paths] \glsadjdefn{hompath}{homotopic as paths}{paths} \glssymboldefn{hompath}{$\simeq$}{$\simeq$} \cloze{Two \glspl{path} $\gamma, \gamma' : I \to X$ both from $x_0$ to $x_1$ are called \emph{homotopic as paths} if they are \gls{homotopic} relative to $\{0, 1\} \subset I$ as in the last lecture. So $\gamma \homotopic \gamma' \homrel{\{x_0, x_1\}}$.} \end{definition*} \end{flashcard} \begin{flashcard}[hom-path-concat-lemma] \begin{lemma*} If $\gamma_0 \hompath \gamma_1$ as \glspl{path} from $x_0$ to $x_1$, and $\gamma_0' \hompath \gamma_1'$ as \glspl{path} from $x_1$ to $x_2$, then $\gamma_0 \concat \gamma_0' \hompath \gamma_1 \concat \gamma_1'$ as \glspl{path} from $x_0$ to $x_2$. \end{lemma*} \begin{proof} \cloze{Let $H$ be the \gls{homotopy} from $\gamma_0$ to $\gamma_1$ relative to $\{x_0, x_1\}$, and $H'$ the \gls{homotopy} from $\gamma_0'$ to $\gamma_1'$ relative to $x_1$ and $x_2$. \begin{center} \includegraphics[width=0.6\linewidth]{images/f055a5061cc54256.png} \end{center} \[ H''(s, t) = \begin{cases} H(2s, t) & 0 \le s \le \half \\ H'(2s - 1, t) & \half \le s \le 1 \end{cases} \] (continuous as usual by the \nameref{gluing_lemma}), is a \gls{homotopy} from $\gamma_0 \concat \gamma_0'$ to $\gamma_1 \concat \gamma_1'$ relative to $x_0$ and $x_2$. } \end{proof} \end{flashcard}