%! TEX root = AlgT.tex % vim: tw=50 % 01/03/2024 11AM \begin{flashcard}[Hzero-iso-lemma] \begin{lemma*} There is an isomorphism \[ \Hgp_0(K) \cong \cloze{\ZZ \{\piz(\polyh|K|)\}} .\] \end{lemma*} \begin{proof} \cloze{Note we have a homomorphism \begin{align*} \phi : \Cgp_0(K) &\to \ZZ \{\piz(\polyh|K|)\} \\ [v] &\mapsto \text{the path component of $v \in \polyh|K|$} \end{align*} This is onto: any path-connected component of $\polyh|K|$ contains a \gls{vert}. If $[v, w]$ is an ordered \nsimp{1}, then $d_1[v, w] = [w] - [v]$. But $[v]$ and $[w]$ lie in the same path-connected component as the \nsimp{1} $\simplex$ goes between them. So $\Im(d_1) \subset \Ker(\phi)$, so we get an induced surjective $\phi : \Hgp_0(K) \to \ZZ\{\piz(\polyh|K|)\}$. If $\phi([v]) = \phi([w])$, choose a path $\gamma : I \to \polyh|K|$ from $v$ to $w$. By \gls{simpapprox}, $I = \ssimp^1$ can be subdivided so that there is a $g : (\ssimp^1)\rsubdiv r \to K$ with $\smapc|g| \homotopic \gamma$, i.e. there are $1$-simplices $[v, v_1], [v_1, v_2], \ldots, [v_k, w]$. Then \[ [w] - [v] = d_1([v, v_1] + [v_1, v_2] + \cdots + [v_k, w]) \] so $[v] = [w] \in \Hgp_0(K)$.} \end{proof} \end{flashcard} \subsection{Mayer-Vietoris Theorem} \begin{flashcard}[exact-homs-defn] \begin{definition*}[Exact homomorphisms] \glsadjdefn{exact}{exact}{sequence} \glsnoundefn{exs}{exact sequence}{exact sequences} \glsnoundefn{ses}{short exact sequence}{short exact sequences} \glsnoundefn{sescc}{short exact sequence of chain complexes}{N/A} \cloze{Say that a pair of homomorphisms \[ A \stackrel{f}{\to} B \stackrel{g}{\to} C \] is \emph{exact} at $B$ if $\Im(f) = \Ker(g)$. More generally, a collection of homomorphisms \[ \cdots \to A_i \to A_{i + 1} \to A_{i + 2} \to A_{i + 3} \to \cdots \] is \emph{exact} if it is exact at each $A_j$, where $A_j$ has homomorphisms in and out. A \emph{short exact sequence} is an \gls{exs} \[ 0 \to A \stackrel{f}{\to} B \stackrel{g}{\to} C \to 0 .\] Note that in this case, $f$ is injective, $g$ is surjective and $\Im(f) = \Ker(g)$. \glsref[cmap]{Chain maps} $i_\bullet : A_\bullet \to B_\bullet$ and $j_\bullet : B_\bullet \to C_\bullet$ form a \emph{short exact sequence} of \glspl{cc} if each $0 \to A_n \stackrel{i_n}{\to} B_n \stackrel{j_n}{\to} C_n \to 0$ is a \gls{ses}.} \end{definition*} \end{flashcard} \begin{flashcard}[cc-ses-natural-hom-thm] \begin{theorem*} If $0 \to A_\bullet \stackrel{i_\bullet}{\to} B_\bullet \stackrel{j_\bullet}{\to} C_\bullet \to 0$ is a \gls{sescc}, then there are natural homomorphisms $\partial_* : \Hcc_n(C_\bullet) \to \Hcc_{n - 1}(A_\bullet)$ such that \begin{center} \includegraphics[width=0.6\linewidth]{images/f0e83b45730e48cd.png} \end{center} is an \gls{exs}. \end{theorem*} \begin{proof} \cloze{\textbf{Constructing $\partial_*$ (snake lemma)}: \[ \begin{tikzcd}[ampersand replacement=\&] 0 \ar[r] \& A_n \ar[r, "i_n"] \ar[d, "d_n"] \& B_n \ar[r, "j_n"] \ar[d, "d_n"] \& C_n \ar[r] \ar[d, "d_n"] \& 0 \\ 0 \ar[r] \& A_{n - 1} \ar[r, "i_{n - 1}"] \& B_{n - 1} \ar[r, "j_{n - 1}"] \& C_{n - 1} \ar[r] \& 0 \end{tikzcd} \] Let $[x] \in \Hcc_n(C_\bullet)$. Then $d_n x = 0$. By surjectivity, there exists $y \in B_n$ such that $j_n y = x$. Then since the diagram commutes, and $d_n j_n y = 0$, we have that $j_{n - 1} d_n y = 0$. Then $d_n(y)$ must be in the image of $i_{n - 1}$ (since the sequence is \gls{exact}). Pick the unique $z$ such that $i_{n - 1} z = d_n(y)$ (uniqueness follows since $i_{n - 1}$ is injective). Then \begin{align*} i_{n - 2} d_{n - 1}(z) &= d_{n - 1} i_{n - 1}(z) \\ &= d_{n - 1} d_n(y) \\ &= 0 \end{align*} Since $i_{n - 2}$ is injective, this implies that $d_{n - 1}(z) = 0$. So $z$ is a cycle. We now want to define $\partial_* [x] = [z]$, but we must check that this is well-defined: we made a choice when picking $y$, and also made a choice by picking the representative $x$. \textbf{$\partial_*$ is well-defined}: Suppose $[x] = [x'] \in \Hcc_n(\Ccc_\bullet)$. Then $x - x' = d_{n + 1}(a)$, $a \in \Ccc_{n + 1}$. The same process for $x'$ gives a $y' \in B_n$. As $j_{n + 1}$ is surjective, can write $a = j_{n + 1}(b)$. Then \[ j_n(y - y') = x - x' = j_n d_{n + 1}(b) ,\] so by \glsref[exact]{exactness} at $B_n$, \[ y - y' = d_{n + 1}(b) + i_n(c) \] for some $c \in A_n$. Now $z'$ is such that $i_{n - 1}(z') = d_n(y')$, so \begin{align*} i_{n - 1}(z - z') &= d_n(y) - d_n(y') \\ &= d_n(y - y') \\ &= d_n(d_{n + 1}() + i_n(c)) \\ &= d_n i_n(c) \\ &= i_{n - 1} d_n(c) \end{align*} injectivity of $i_{n - 1}$ again, shows $z - z' = d_n(c)$. So $[z] = [z'] \in \Hcc_{n - 1}(A_\bullet)$. \textbf{$\partial_*$ is a homomorphism}: given $[x_1], [x_2] \in \Hcc_n(C_\bullet)$ with corresponding $y_1, y_2, z_1, z_2$, choose $y_1 + y_2$ to be the lift of $x_1 + x_2$. This gives $z_1 + z_2$ as the result, so \[ \partial_*[x_1 + x_2] = [z_1 + z_2] = [z_1] + [z_2] .\] \textbf{Exactness at $\Hcc_n(C_\bullet)$}: Let $[x] \in \Im(\cmapstar j)$, so there exists $y \in B_n$ such that $j_n(y) = x$ and $y$ is a cycle. Can use this $y$ to calculate $\partial_*[x]$. As $y$ is a cycle, $d_n(y) = 0$, so $z$ is $0$, so $\partial_*[x] = 0$. Suppose now that $\partial_*[x] = 0$. Calculate this by choosing $y \in B_n$ and taking the corresponding $z$. Then $z = d_n(t)$ (as $[z] = 0$). Then $j_n(y - i_n(t)) = x$ and $d_n(y - i_n(t)) = d_n y - d_n i_n(t) = i_n(z - z) = 0$. So $\cmapstar j [y - i_n(t)] = [x]$, so $[x] \in \Im(\cmapstar j)$. \textbf{Exactness at $\Hcc_n(B_\bullet)$}: As $j_n \circ i_n = 0$, $\Im(\cmapstar i) \subseteq \Ker(\cmapstar j)$. Suppose $\cmapstar j [y] = 0$. Then $j_n(y) = d_{n + 1}(a)$ for some $a \in \Ccc_{n + 1}$. Let $b \in B_{n + 1}$ be such that $j_n(b) = a$. Then \[ j_n(y - d_{n + 1} b) = d_{n + 1}(a) - j_n d_{n + 1}(b) = d_{n + 1}(a) - d_{n + 1} j_{n + 1}(b) = 0 .\] So let $y - d_{n + 1} (b) = i_n(t)$. Then $d_n(t - d_{n + 1}(b)) = 0$, so $[y] = [y - d_{n + 1}(b)] = [i_n(t)] = \cmapstar i[t]$. \textbf{Exactness at $\Hcc_n(A_\bullet)$}: Let $[z] \in \partial_*[x]$. Then $i_n(z) = d_{n + 1}(y)$, so $\cmapstar i[z] = 0$. Let $[z]$ be such that $\cmapstar i[z] = 0$. Then $i_n(z) = d_{n + 1}(y)$ for some $y$. Thus $[z] = \partial_* [j_{n + 1}(y)]$, so $\Ker(\cmapstar i) \subseteq \Im(\partial_*)$.} \end{proof} \end{flashcard}