%! TEX root = AlgT.tex % vim: tw=50 % 28/02/2024 11AM Just as we did for \gls{homotopy} of \glspl{map} between spaces, one checks: \begin{enumerate}[(1)] \item being \gls{chomic} defines an equivalence relation on the set of \glspl{cmap} from $\Ccc_\bullet$ to $D_\bullet$. Write $f_\bullet \chomic g_\bullet$. \item if $a_\bullet : A_\bullet \to \Ccc_\bullet$ is a \gls{cmap}, and $f_\bullet \chomic g_\bullet : \Ccc_\bullet : D_\bullet$, then $f_\bullet \circ a_\bullet \chomic g_\bullet \circ a_\bullet$ and similarly with post composition. \end{enumerate} \begin{flashcard}[chom-equivalence-defn] \begin{definition*}[Chain homotopy equivalence] \glsnoundefn{chomequiv}{chain homotopy equivalence}{chain homotopy equivalences} \cloze{A \gls{cmap} $f_\bullet : \Ccc_\bullet \to D_\bullet$ is a \emph{chain homotopy equivalence} if there is a $g_\bullet : D_\bullet \to \Ccc_\bullet$, $g_\bullet \circ f_\bullet \chomic \id_{\Ccc_{\bullet}}$, $f_\bullet \circ g_\bullet \chomic \id_{D_\bullet}$.} \end{definition*} \end{flashcard} \begin{flashcard}[chomy-equiv-iso-lemma] \begin{lemma*} If $f_\bullet : \Ccc_\bullet \to D_\bullet$ is a \gls{chomequiv}, then \cloze{$\cmapstar f : \Hcc_n(\Ccc_\bullet) \to \Hcc_n(D_\bullet)$ is an isomorphism.} \end{lemma*} \begin{proof} \cloze{Using a homotopy inverse $g_\bullet$, have $\cmapstar f \circ \cmapstar f = \cmapstar{(f_\bullet \circ g_\bullet)} = \cmapstar{(\id_{D_\bullet})} = \id_{\Hcc_n(D_\bullet)}$ and simlarly for $\cmapstar g \circ \cmapstar f = \id_{\Hcc_n(\Ccc_\bullet)}$.} \end{proof} \end{flashcard} \textbf{Exercise:} Let \[ \ZZ[n] = (\to 0 \stackrel{d_{n + 1}}{\to} \ZZ \stackrel{d_n}{\to} 0 \to \cdots) .\] Describe \[ \{\ZZ[n] \to \Ccc_\bullet\} / \text{\gls{chom}} .\] \subsection{Elementary calculations} Return to the \glspl{cc} $\Ccc_\bullet(K)$ associated to a \gls{simpcomp} $K$. \begin{flashcard}[simp-map-well-def-hom-lemma] \begin{lemma*} Let $f : K \to L$ be a \gls{simpmap}. Then the formula \begin{align*} f_\bullet : \Cgp_n(K) &\to \Cgp_n(L) \\ [a_0, \ldots, a_n] &\mapsto [f(a_0), \ldots, f(a_n)] \end{align*} is a \cloze{well-defined homomorphism, and defines a \gls{cmap} $f_\bullet : \Cgp_\bullet(K) \to \Cgp_\bullet(L)$, and hence gives a $\cmapstar f : \Hgp_n(K) \to \Hgp_n(L)$.} \end{lemma*} \begin{proof} \cloze{To be well-defined, need the given formula to send $\Tgp_n(K)$ into $\Tgp_n(L)$. It does. To be a \gls{cmap}, need: \begin{align*} f_{n - 1} d_n[a_0, \ldots, a_n] &= f_{n - 1} \left( \sum_{i = 0}^n (-1)^i [a_0, \ldots, \skipel{a_i}, \ldots, a_n] \right) \\ &= \sum_{i = 0}^n (-1)^i [f(a_0), \ldots, \skipel{f(a_i)}, \ldots, f(a_n)] \\ &= d_n f_n[a_0, \ldots, a_n] \qedhere \end{align*}} \end{proof} \end{flashcard} \begin{flashcard}[simp-comp-cone-defn] \begin{definition*}[Cone] \glsnoundefn{cone}{cone}{cones} \glsnoundefn{conep}{cone point}{cone points} \cloze{Say a \gls{simpcomp} $K$ is a \emph{cone} with \emph{cone point} $v_0 \in \vset K$ if every \gls{simp} of $K$ is a face of a \gls{simp} which has $v_0$ as a \gls{vert}.} \end{definition*} \end{flashcard} \begin{flashcard}[cone-inclusion-point-prop] \begin{proposition*} If $K$ is a \gls{cone} with \gls{conep} $v_0$, then the inclusion $i : \{v_0\} \injto K$ induces a \gls{chomequiv} $i_\bullet : \Cgp_\bullet(\{v_0\}) \to \Cgp_\bullet(K)$ and so \[ \Hgp_n(K) \cong \begin{cases} \ZZ\{[v_0]\} & n = 0 \\ 0 & \text{otherwise} \end{cases} \] \end{proposition*} \begin{proof} \cloze{The only map $r : \vset K \to \{v_0\}$ is a \gls{simpmap} $r : K \to \{v_0\}$, and $r \circ i \chomic \id_{\{v_0\}}$. I claim that $i \circ r \chomic \id_{\Cgp_\bullet(K)}$. Define \begin{align*} h_n : \Ogp_n(K) &\to \Ogp_{n + 1}(K) \\ [a_0, \ldots, a_n] &\mapsto [v_0, a_0, \ldots, a_n] \end{align*} Note that this sends $\Tgp_n(K)$ into $\Tgp_{n + 1}(K)$, so descends to $h_n : \Cgp_n(K) \to \Cgp_{n + 1}(K)$. For $n > 0$, then \begin{align*} (h_{n - 1} \circ d_n + d_{n + 1} \circ h_n)[a_0, \ldots, a_n] &= \left( \sum_{i = 0}^n (-1)^i [v_0, a_0, \ldots, \skipel{a_i}, \ldots, a_n] \right) \\ &~~~~+ \left( [a_0, \ldots, a_n] + \sum_{i = 0}^n (-1)^{i + 1} [v_0, a_0, \ldots, \skipel{a_i}, \ldots, a_n] \right) \\ &= [a_0, \ldots, a_n] \\ &= (\id - i_n \circ r_n) [a_0, \ldots, a_n] \end{align*} since $i_n \circ r_n [a_0, \ldots, a_n] = [v_0, \ldots, v_0] = 0$ as $n > 0$. For $n = 0$, \begin{align*} (\ub{h_{-1}}_{=0} \circ d_0 + d_1 \circ h_0) [a_0] &= d_1[v_0, a_0] - [a_0] - [v_0] \\ &= (\id - i_0 r_0)[a_0] \end{align*} So $h$ provides a \gls{chom} from $\id_{\Cgp_\bullet(K)}$ to $i_\bullet \circ r_\bullet$.} \end{proof} \end{flashcard} \begin{flashcard}[standard-n-simplex-homology-coro] \begin{corollary*} The standard \nsimp{n} $\ssimp^n \subset \RR^{n + 1}$ and all its \glspl{face}, $L$, \cloze{is a \gls{cone} with any \gls{vert} as \gls{conep}. So} \[ \Hgp_i(L) \cong \cloze{\begin{cases} \ZZ & i = 0 \\ 0 & \text{otherwise} \end{cases}} \] \end{corollary*} \end{flashcard} \begin{flashcard}[n-sphere-homology-coro] \begin{corollary*} Let $K$ be the union of all the proper \glspl{face} of $\ssimp^n \subset \RR^{n + 1}$ (i.e. the simplicial $(n - 1)$-sphere). Then for $n \ge 2$, we have \[ \Hgp_i(K) \cong \cloze{\begin{cases} \ZZ & i = 0 \\ \ZZ & i = n - 1 \\ 0 & \text{otherwise} \end{cases}} \] \end{corollary*} \begin{proof} \cloze{Note that $K$ is the $(n - 1)$-skeleton of $L$, so $i : K \to L$ gives an isomorphism $\Cgp_i(K) \stackrel{\cong}{\to} \Cgp_i(L)$ for $i \le n - 1$. These \glspl{cc} are \[ \begin{tikzcd}[ampersand replacement=\&] \Cgp_0(L) \ar[equal]{d} \& \Cgp_1(L) \ar[l, "d_1^L", swap] \ar[equal]{d} % \& \Cgp_2(L) \ar[l, "d_2^L"] \& \cdots \ar[l, "d_2^L", swap] \ar[equal]{d} % \& \Cgp_{n - 2}(L) \ar[l, "d_{n - 2}^L"] \& \Cgp_{n - 1}(L) \ar[l, "d_{n - 1}^L", swap] \ar[equal]{d} \& \Cgp_n(L) \ar[l, "d_n^L", swap] \& 0 \ar[l, "d_{n + 1}^L", swap] \\ \Cgp_0(K) \& \Cgp_1(K) \ar[l, "d_1^K", swap] % \& \Cgp_2(K) \ar[l, "d_2^K"] \& \cdots \ar[l, "d_2^K", swap] % \& \Cgp_{n - 2}(K) \ar[l, "d_{n - 2}^K"] \& \Cgp_{n - 1}(K) \ar[l, "d_{n - 1}^K", swap] \& 0 \ar[l, "d_n^K", swap] \ar[u] \& 0 \ar[l] \end{tikzcd} \] For $i \le n - 2$, \[ \Hgp_i(K) = \Hgp_i(L) = \begin{cases} \ZZ & i = 0 \\ 0 & 1 \le i \le n - 2 \end{cases} \] For $i > n - 1$, $\Hgp_i(K) = 0$ as there are no $i$-\glspl{simp}. \[ \Hgp_{n - 1}(K) = \frac{\Ker(d_{n - 1}^K)}{\Im(d_n^K)} = \Ker(d_{n - 1}^K) = \Ker(d_{n -1}^L) .\] As $\Hgp_{n - 1}(L) = 0$, $\frac{\Ker(d_{n - 1}^L)}{\Im(d_n^L)} = 0$, so $\Ker(d_{n - 1}^L) = \Im(d_n^L)$. As $\Hgp_n(L) = 0$, we see that $d_n^L : \ZZ \cong \Cgp_n(L) \to \Cgp_{n - 1}(L)$ is injective. So $\Hgp_{n - 1}(K) = \Ker(d_{n - 1}^L) = \Im(d_n^L) \cong \ZZ$. It is generated by $d_n^L[e_1, \ldots, e_n] \in \Cgp_{n - 1}(K)$.} \end{proof} \end{flashcard}