%! TEX root = AlgT.tex % vim: tw=50 % 26/02/2024 11AM \begin{flashcard}[nth-simplicial-homology-group-defn] \begin{definition*}[$n$-th simplicial homology group] \glssymboldefn{Hgp}{$H_n(K)$}{$H_n(K)$} \cloze{The \emph{$n$-th simplicial homology group of $K$} is \[ H_n(K) \defeq \frac{\Ker(d_n : C_n(K) \to C_{n - 1}(K))}{\Im(d_{n - 1} : C_{n + 1}(K) \to C_n(K))} .\]} \end{definition*} \end{flashcard} \begin{example*} Let $K$ be the union of all the proper \glspl{face} of the standard \nsimp{2} $\ssimp^2 \subset \RR^3$, i.e. \[ K = \{\simplex, \simplex, \simplex, \simplex, \simplex, \simplex\} .\] \begin{center} \includegraphics[width=0.3\linewidth]{images/9cbdc51d9ec245bb.png} \end{center} Order the \glspl{vert} as $e_1 \prec e_2 \prec e_3$. Then \begin{align*} \Cgp_0(K) &= \ZZ\{[e_1], [e_2], [e_3]\} \\ \Cgp_1(K) &= \ZZ\{[e_1, e_2], [e_2, e_3], [e_1, e_3]\} \\ \Cgp_n(K) &= 0 &&(n \ge 2) \end{align*} and \[ \dhom_1 : \Cgp_1(K) \to \Cgp_0(K), \qquad \dhom_1[e_i, e_j] = [e_j] - [e_i] \] \[ \begin{pmatrix} -1 & 0 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \] Note $\Im(d_1) = \langle [e_i] - [e_j]\rangle_{\ZZ}$, so \[ \Hgp_0(K) = \frac{\ZZ\{[e_1], [e_2], [e_3]\}}{\langle [e_i] - [e_j] \rangle} \cong \ZZ .\] For $\Hgp_1$, note \begin{align*} \Ker(d_1) &= \ZZ\{[e_1, e_2] \ub{- [e_1, e_3]}_{= [e_3, e_1]} + [e_2, e_3]\} \cong \ZZ \\ \Im(d_2) &= 0 \end{align*} So $\Hgp_1(K) \cong \ZZ$. \end{example*} \begin{example*} Now let $L$ be the standard \nsimp{2} $\ssimp^2 \subset \RR^3$, i.e. \[ L = \{\simplex, \simplex, \simplex, \simplex, \simplex, \simplex, \simplex\} .\] \begin{center} \includegraphics[width=0.6\linewidth]{images/dd2e4a721abf46bf.png} \end{center} Then \begin{align*} \Cgp_0(L) &= \ZZ\{[e_1], [e_2], [e_3]\} \\ \Cgp_1(L) &= \ZZ\{[e_1, e_2], [e_1, e_3], [e_2, e_3]\} \\ \Cgp_2(L) &= \ZZ\{[e_1, e_2, e_3]\} \end{align*} So \[ 0 \stackrel{\dhom_4}{\to} 0 \stackrel{\dhom_3}{\to} \ub{\Cgp_2(L)}_{= \ZZ} \stackrel{\dhom_2}{\to} \ub{\Cgp_1(L)}_{= \ZZ^3} \stackrel{\dhom_1}{\to} \ub{\Cgp_0(L)}_{= \ZZ^3} \to 0 .\] Note \[ \dhom_2[e_1, e_2, e_3] = [e_2, e_3] - [e_1, e_3] + [e_1, e_2] \neq 0 ,\] so $\dhom_2$ is injective, so $\Hgp_2(L) = 0$. But also \begin{align*} \Hgp_1(L) &= \frac{\Ker(\dhom_1)}{\Im(\dhom_2)} = \frac{\ZZ\{[e_1, e_2] - [e_1, e_3] + [e_2, e_3]\}}{\ZZ\{[e_1, e_2] - [e_1, e_3] + [e_2, e_3]\}} = 0 \\ \Hgp_0(L) &= \ZZ \end{align*} (where $\Hgp_0(L) = \ZZ$ because the relevant groups $\Cgp_1, \Cgp_0$ haven't changed since the previous example). \end{example*} \subsection{Some homological algebra} \begin{flashcard}[chain-complex-defn] \begin{definition*}[Chain complex] \glssymboldefn{Ccc}{$C_\bullet$}{$C_\bullet$} \glsnoundefn{cc}{chain complex}{chain complexes} \glssymboldefn{Hcc}{$H_n(C_\bullet)$}{$H_n(C_\bullet)$} \glssymboldefn{dcc}{$d_n$}{$d_n$} \cloze{A \emph{chain complex} is a sequence $C_0, C_1, C_2, \ldots$ of abelian groups and homomorphisms $d_n : C_n \to C_{n - 1}$ such that $d_{n - 1} \circ d_n = 0$ for all $n$. Write this data as $C_\bullet$, and call the $d_n$'s the \emph{differentials} of $C_\bullet$. Then define \[ H_n(C_\bullet) \defeq \frac{\Ker(d_n : C_n \to C_{n - 1})}{\Im(d_{n + 1} : C_{n + 1} \to C_n)} .\]} \end{definition*} \end{flashcard} \begin{flashcard}[Zcc-Bcc-notations] \begin{notation*} \glssymboldefn{Zcc}{$Z_n(C_\bullet)$}{$Z_n(C_\bullet)$} \glssymboldefn{Bcc}{$B_n(C_\bullet)$}{$B_n(C_\bullet)$} Write \begin{align*} Z_n(\Ccc_\bullet) &\defeq \cloze{\Ker(\dcc_n : \Ccc_n \to \Ccc_{n - 1})} &&\text{``the \cloze{$n$-cycles of $\Ccc_\bullet$''}} \\ B_n(\Ccc_\bullet) &\defeq \cloze{\Im(\dcc_{n + 1} : \Ccc_{n + 1} \to \Ccc_n)} &&\text{``the \cloze{$n$-boundaries of $\Ccc_\bullet$''}} \end{align*} \end{notation*} \end{flashcard} \begin{flashcard}[chain-map-defn] \begin{definition*}[Chain map] \glsnoundefn{cmap}{chain map}{chain maps} \cloze{A \emph{chain map} $f_\bullet : \Ccc_\bullet \to D_\bullet$ is a sequence of homomorphisms $f_n : \Ccc_n \to D_n$, such that $f_n \circ \dcc_{n + 1} = \dcc_{n + 1} \circ f_{n + 1}$, i.e. the diagram \[ \begin{tikzcd}[ampersand replacement=\&] \Ccc_{n + 1} \ar[r, "f_{n + 1}"] \ar[d, "\dcc_{n + 1}"] \& D_{n + 1} \ar[d, "\dcc_{n + 1}"] \\ \Ccc_n \ar[r, "f_n"] \& D_n \end{tikzcd} \] commutes.} \end{definition*} \end{flashcard} \begin{flashcard}[chain-homotopy-defn] \begin{definition*}[Chain homotopy] \glsnoundefn{chom}{chain homotopy}{chain homotopies} \glsadjdefn{chomic}{chain homotopic}{\glspl{cmap}} \glssymboldefn{chomic}{$\simeq$}{$\simeq$} \cloze{A \emph{chain homotopy} between $f_\bullet, g_\bullet : \Ccc_\bullet \to D_\bullet$ is a sequence of homomorphisms $h_n : \Ccc_n \to D_{n + 1}$ such that \[ g_n - f_n = d_{n + 1} \circ f_n + h_{n - 1} \circ d_n .\]} \end{definition*} \end{flashcard} \vspace{-1em} The above definition is hard to motivate at the moment, but one should just accept it as it is for now. \begin{flashcard}[chain-map-induced-hom-lemma] \begin{lemma*} \glssymboldefn{cmapstar}{$f_*$}{$f_*$} A \gls{cmap} $f_\bullet : \Ccc_\bullet \to D_\bullet$ induces a homomorphism \begin{align*} f_* : \Hcc_n(C_\bullet) &\to \Hcc_n(D_\bullet) \\ [x] &\mapsto [f_n(x)] \end{align*} Furthermore, if $g_\bullet$ is \gls{chomic} to $f_\bullet$, then $g_* = f_*$. \end{lemma*} \begin{proof} \cloze{Need to show that $\cmapstar f$ is well-defined. \begin{enumerate}[(i)] \item Let $[x] \in \Hcc_n(\Ccc_\bullet)$, i.e. $x \in \Ccc_n$ and $\dcc_n(x) = 0$. Then \[ d_n f_n(x) = f_{n - 1} \ub{d_n (x)}_{=0} = 0 .\] so $f_n(x) \in \Zcc_n(D_\bullet)$. \item If $[x] = [y] \in \Hcc_n(C_0)$, then $x - y \in \Bcc_n(\Ccc_\bullet)$, $x - y = \dcc_{n + 1}(z)$. So \[ f_n(x) - f_n(y) = f_n \dcc_{n + 1}(z) = \dcc_{n + 1} f_{n + 1}(z) \in \Bcc_n(D_\bullet) ,\] so $[f_n(x)] = [f_n(y)]$. So $\cmapstar f$ is a well-defined function. It is a homomorphism. \end{enumerate} Now let $g_\bullet$ be \gls{chomic} to $f_\bullet$, i.e. $g_n - f_n = \dcc_{n + 1} \circ h_n + h_{n - 1} \circ \dcc_n$. Let $x \in \Zcc_n(\Ccc_\bullet)$, so \[ g_n(x) - f_n(x) = \dcc_{n + 1} \circ h_n (x) + h_{n - 1} \circ \dcc_n (x) \in \Bcc_n(D_\bullet) .\] So $\cmapstar g([x]) = [g_n(x)] = [f_n(x)] = \cmapstar f([x])$.} \end{proof} \end{flashcard}