%! TEX root = AlgT.tex % vim: tw=50 % 21/02/2024 11AM The \emph{\glspl{vert}} of $K \subdiv$ are in bijection with the \glspl{simp} of $K$. Choose a function $K \to \vset K$ which assigns to $\sigma$ \emph{some} \gls{vert} of $\sigma$. So \begin{align*} g : \vset{K \subdiv} \cong K &\to \vset K \\ \bcentre{\sigma} (\leftrightarrow \sigma) &\mapsto v_\sigma \end{align*} \begin{center} \includegraphics[width=0.3\linewidth]{images/90577b2a531749b6.png} \end{center} If $\simplex<\bcentre{\sigma_0}, \ldots, \bcentre{\sigma_p}>$ is a \gls{simp} of $K \subdiv$ then $\sigma_0 \face \sigma_1 \face \cdots \face \sigma_p$ and $g(\bcentre{\sigma_i})$ is some \gls{vert} of $\sigma$, so a \gls{vert} of $\sigma_p$. The $\{g(\bcentre{\sigma_i})\}$ thus spans a \gls{face} of $\sigma$, so is a \gls{simp} of $K$ if and only if $g$ is a \gls{simpmap}. Also, if $\bcentre{\sigma} \in \tau' = \simplex<\bcentre{\tau_0}, \ldots, \bcentre{\tau_p}> \in K \subdiv$, then $\bcentre{\sigma} \in \tau_p$, so $\sigma$ is a \gls{face} of $\tau_p$. So $v_\sigma \in \sigma \subseteq \tau_p$. So $\interior{\tau\subdiv} \subset \interior{\tau_p} \subseteq \St_K(v_\sigma)$. Thus \[ \St_{K\subdiv}(\bcentre{\sigma}) \subset \St_K(v_\sigma = g(\sigma)) \] so $g$ is a \gls{simpapprox} to $\id : \polyh|K\subdiv| \to \polyh|K|$. So $\smapc|g| \homotopic \id$. \begin{flashcard}[mesh-of-simpcomp-defn] \begin{definition*}[Mesh] \glsnoundefn{mesh}{mesh}{meshes} \glssymboldefn{mesh}{$\mu(K)$}{$\mu(K)$} \cloze{The \emph{mesh} of $K$ is \[ \mu(K) = \max\{|v_0 - v_1| \st \simplex \in K\} .\]} \end{definition*} \end{flashcard} \begin{flashcard}[mesh-subdiv-ineq-lemma] \begin{lemma*} Suppose $K$ has \gls{scdim} $\le n$, then $\mesh(K\rsubdiv{r}) \le \cloze{\left( \frac{n}{n + 1} \right)^r \mesh(K)}$, so $\mesh(K\rsubdiv{r}) \to 0$ as $r \to \infty$. \end{lemma*} \begin{proof} \cloze{Enough to treat the case $r = 1$. Let $\simplex<\bcentre{\tau}, \bcentre{\sigma}> \in K \subdiv$, so $\tau \face \sigma$ in $K$. \[ |\bcentre{\tau} - \bcentre{\sigma}| \le \max\{|v - \bcentre{\sigma}| \st \text{$v$ is a \gls{vert} of $\sigma$}\} .\] \begin{center} \includegraphics[width=0.4\linewidth]{images/060bbe1d378049d1.png} \end{center} Let $\sigma = \simplex$ with $m \le n$, and reorder so that the maximum is attained at $v = v_0$. \begin{align*} |v_0 - \bcentre{\sigma}| &= \left| v_0 - \frac{1}{m + 1} \sum_{i = 0}^m v_i \right| \\ &= \left| \frac{m + 1}{m + 1} v_0 - \frac{1}{m + 1} \sum_{i = 0}^m v_i \right| \\ &= \frac{1}{m + 1} \left| \sum_{i = 0}^m v_0 - v_i\right| \\ &\le \frac{1}{m + 1} \sum_{i = 1}^m |v_0 - v_i| \\ &\le \frac{m}{m + 1} \mesh(K) \\ &\le \frac{n}{n + 1} \mesh(K) \qedhere \end{align*}} \end{proof} \end{flashcard} \begin{flashcard}[simpapprox-thm] \begin{theorem*}[Simplicial Approximation Theorem] \cloze{Let $f : \polyh|K| \to \polyh|L|$ be a continuous map. Then there is a $r \gg 0$ and a \gls{simpmap} $g : K\rsubdiv{r} \to L$ such that $g$ is a \gls{simpapprox} to $f$. If $f$ is \glsref[simpmap]{simplicial} on some $\polyh|N| \subset \polyh|K|$, can take $g|_{\vset{N}} = f|_{\vset{N}}$.} \end{theorem*} \begin{proof} \cloze{The $\St_L(\omega)$, $\omega \in \vset L$ is an open cover of $\polyh|L|$, so \[ \{f^{-1} \St_K(\omega)\}_{\omega \in \vset L} \] is an open cover of $\polyh|K|$; pick $\delta > 0$ using \nameref{lebesgue_number_lemma} for this cover. Choose $r \gg 0$ such that $\mesh(K\rsubdiv{r}) < \delta$. For each $v \in \vset{K\rsubdiv{r}}$ have \[ \St_{K\rsubdiv{r}}(v) \subseteq B_{\mesh(K\rsubdiv{r})}(v) \subseteq f^{-1}(\St_L(\omega)) \] for some $w \in \vset L$. Define $g : \vset{K\rsubdiv{r}} \to \vset L$ by $g(v) = w$. Then \[ f(\St_{K\rsubdiv{r}}(v)) \subseteq \St_L(g(v)) .\] So $g$ is a \gls{simpapprox} to $f$. So $g$ is a \gls{simpmap}. The final step is by choosing $w$ carefully when $v \in \vset N$.} \end{proof} \end{flashcard} \begin{flashcard}[Sn-Sm-homotopic-constant-coro] \begin{corollary*} If $\cloze{n < m}$, then any \gls{map} $f : S^n \to S^m$ is \cloze{\gls{homotopic} to a constant map.} \end{corollary*} \begin{proof} \cloze{Spheres are polyhedra: $S^n = \polyh|K|$, $S^n = \polyh|L|$, then $f$ is \gls{homotopic} to $\smapc|g|$, for some $g : K\rsubdiv{r} \to L$. This can not hit any \nsimp{m} of $L$, as $K$ has $\dim \le n$. So $\smapc|g|$ must miss every point on the \gls{int} of some \nsimp{m}: it is not onto. Thus it factors through $(S^n - \{*\}) \homoteq *$, so is \gls{homotopic} to a constant map.} \end{proof} \end{flashcard}