%! TEX root = AlgT.tex % vim: tw=50 % 19/02/2024 11AM \begin{lemma*} \glssymboldefn{smapc}{$|f|$}{$|f|$} A \gls{simpmap} $f : K \to L$ of \glspl{simpcomp} induces a continuous map $|f| : \polyh|K| \to \polyh|L|$, and $|f \circ g| = |f| \circ |g|$. \end{lemma*} \begin{proof} For a $\sigma \in K$, $\sigma = \simplex$, define \begin{align*} f_\sigma : \sigma &\to \polyh|L| \\ \sum_{i = 0}^p t_i a_i &\mapsto \sum_{i = 0}^p t_i f(a_i) \end{align*} which is linear in the $t_i$, hence continuous. If $\tau \face \sigma$, then $f_\tau = f_\sigma|_\tau$, so $f_\sigma|_{\sigma \cap \sigma'} = f_{\sigma'}|_{\sigma \cap \sigma'}$, so the $f_\sigma$ glue to a continuous $|f| : \polyh|K| = \bigcup_{\sigma \in K} \sigma \to \polyh|L|$. The formula for $|f|$ shows that it behaves as claimed under composition. \end{proof} So we can recover $f$ from $\smapc|f|$ and the discrete sets $\vset K \subset \polyh|K|$, $\vset L \subset \polyh|L|$, i.e. a \gls{simpmap} is the same as a continuous map $\polyh|K| \to \polyh|L|$ which sends \glspl{vert} to \glspl{vert}, and is affine on each \gls{simp}. \begin{flashcard}[star-link-defn] \begin{definition*}[Star and link] \glssymboldefn{St}{St}{St} \glssymboldefn{Lk}{Lk}{Lk} \glsnoundefn{star}{star}{stars} \glsnoundefn{link}{link}{links} For a $x \in \polyh|K|$, \begin{enumerate}[(i)] \item The (open) \emph{star} of $x$ is the union of the interiors of the \glspl{simp} which contain $x$ \[ \St_K(x) = \bigcup_{\sigma \in K} \interior \sigma \subset \RR^m \] The complement of $\St_K(x)$ is the union of \glspl{simp} which do not contain $x$, a \gls{polyh}, so closed. Thus $\St_K(x)$ is open. \item The \emph{link} of $x$, $\Lk_K(x)$ is the union of those \glspl{simp} which do not contain $x$, but are \glspl{face} of a \gls{simp} which does not contain $x$. \end{enumerate} \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{center} \includegraphics[width=0.6\linewidth]{images/1e163d8bd14c432e.png} \end{center} \end{example*} \subsection{Simplicial approximation} \begin{flashcard}[simplicial-approx-defn] \begin{definition*}[Simplicial approximation] \glsnoundefn{simpapprox}{simplicial approximation}{simplicial approximations} \cloze{Let $f : \polyh|K| \to \polyh|L|$ be a continuous \gls{map}. A \emph{simplicial approximation} to $f$ is a function $g : \vset K \to \vset L$ such that \[ f(\St_K(v)) \subset \St_L(g(v)) \] for all $v \in \vset K$.} \end{definition*} \end{flashcard} \begin{flashcard}[simplicial-approximation-homotopy-lemma] \begin{lemma*} \refsteplabel[simplicial approximations are simplicial maps]{simpapprox_are_simpmap} If $g$ is a \gls{simpapprox} to a continuous \gls{map} $f$, then $g$ is a \gls{simpmap}, and $f$ is is \gls{homotopic} to $\smapc|g|$. Furthermore, this \gls{homotopy} may be taken \glsref[homotopy]{relative} to \[ \{x \in \polyh|K| \st f(x) = \smapc|g|(x)\} .\] \end{lemma*} \begin{proof} \cloze{To show that $g$ defines a \gls{simpmap}, for $\sigma \in K$ we must show that the images under $g$ of the \glspl{vert} of $\sigma$ span a \gls{simp} of $L$. For $x \in \interior \sigma$, we have $x \in \bigcap_{v \in \vset \sigma} \St_K(v)$, so \[ f(x) = \bigcap_{v \in \vset \sigma} f(\St_K(v)) \subset \bigcap_{v \in \vset \sigma} \St_L(g(v)) .\] If $\tau$ is the unique \gls{simp} of $L$ with $f(x) \in \interior \tau$, then each $g(v)$ is a \gls{vert} of $\sigma$. So the $\{g(v)\}$ span a \gls{face} of $\tau$, which is a \gls{simp} of $L$. Want to show $f \homotopic \smapc|g|$. If $\polyh|L| \subseteq \RR^m$, then let \begin{align*} H : \polyh|K| \times I &\to \polyh|L| \subset \RR^m \\ (x, t) &\mapsto t \cdot f(x) + (1 - t) \smapc|g|(x) \end{align*} This is continuous, so need to show it indeed lies in $\polyh|L|$. Let $x \in \interior\sigma \subset \polyh|K|$ and suppose $f(x) \in \interior \tau \subset \polyh|L|$. If $\sigma = \simplex$ then by the above each $g(a_i)$ is a \gls{vert} of $\tau$. Then \[ \smapc|g|(x) = \sum_{i = 0}^p t_i g(a_i) \in \tau \] as it is a convex linear combination of \glspl{vert} of $\tau$. As $f(x) \in \tau$, each of $tf(x) + (1 - t)\smapc |g| (x)$ lies in $\tau$ too.} \end{proof} \end{flashcard} \begin{flashcard}[barycentre-defn] \begin{definition*}[Barycentre] \glsnoundefn{bcentre}{barycentre}{barycentres} \glssymboldefn{bcentre}{hat $\sigma$}{hat $\sigma$} \cloze{The \emph{barycentre} of a \gls{simp} $\sigma = \simplex$ is the point \[ \hat{\sigma} = \frac{1}{p + 1} (a_0 + a_1 + \cdots + a_p) .\]} \end{definition*} \end{flashcard} \begin{center} \includegraphics[width=0.6\linewidth]{images/c95f96283b024c5b.png} \end{center} \begin{flashcard}[barycentre-subdivision-defn] \begin{definition*}[Barycentre subdivision] \glssymboldefn{rsubdiv}{$K^{(r)}$}{$K^{(r)}$} \glssymboldefn{subdiv}{$K'$}{$K'$} \glsnoundefn{bsubdiv}{barycentric subdivision}{N/A} \cloze{The \emph{barycentre subdivision} of a \gls{simpcomp} $K$ is \[ K' = \{\simplex<\bcentre{\sigma_0}, \ldots, \bcentre{\sigma_p}> \st \sigma_i \in K, \text{ and } \sigma_0 \propface \sigma_1 \propface \cdots \propface \sigma_p\} \] We will use the notation $K^{(r)} = (K^{(r - 1)})'$ (where $K^{(0)} = K$).} \end{definition*} \end{flashcard} \begin{note*} It is not obvious that this is a \gls{simpcomp}. \end{note*} \begin{flashcard}[subdiv-simpcomp-prop] \begin{proposition*} $K\subdiv$ is a \gls{simpcomp}, and $\polyh|K\subdiv| = \polyh|K|$. \end{proposition*} \begin{proof} \cloze{If $\sigma_0 \propface \sigma_1 \propface \cdots \propface \sigma_p$ then the $\bcentre{\sigma_i}$ are \gls{affindep}: Suppose $\sum_{i = 0}^p t_i \bcentre{\sigma_i} = 0$ and $\sum_{i = 0}^p t_i = 1$. Let $j = \max\{i \st t_i \neq 0\}$. Then \[ \bcentre{\sigma_j} = -\sum_{i = 0}^p \frac{t_i}{t_j} \bcentre{\sigma_i} \in \sigma_{j - 1}, \] so $\bcentre{\sigma_j}$ lies in a proper \gls{face} of $\sigma_j$, which is not possible. Thus all $t_i$ must be $0$. $K\subdiv$ is a \gls{simpcomp}: Let $\simplex<\bcentre{\sigma_0}, \ldots, \bcentre{\sigma_p}> \in K\subdiv$. A \gls{face} is given by omitting some $\bcentre{\sigma_j}$'s. But omitting some $\sigma_j$'s from $\sigma_0 \propface \sigma_1 \propface \cdots \propface \sigma_p$ still gives a strictly increasing chain of \glspl{simp} of $K$. Let $\sigma' = \simplex<\bcentre{\sigma_0}, \ldots, \bcentre{\sigma_p}>$, $\tau' = \simplex<\bcentre{\tau_0}, \ldots, \bcentre{\tau_1}>$ and consider $\sigma' \cap \tau'$. This is inside $\sigma_p \cap \tau_p$, which is a \gls{simp} $\delta$ of $K$. So there are \glspl{simp} \[ \sigma'' = \simplex<\bcentre{\sigma_0} \cap \delta, \ldots, \bcentre{\sigma_p} \cap \delta>, \qquad \tau'' = \simplex<\bcentre{\tau_0} \cap \delta, \ldots, \bcentre{\tau_p} \cap \delta> \] of $K$. Now $\sigma' \cap \tau' = \sigma'' \cap \tau''$ This reduces to the case that $\sigma''$ and $\tau''$ are contained in a \gls{simp} $\delta$ of $K$. Now we split into cases. If $\sigma''$ and $\tau''$ contain $\bcentre \delta$, then let $\ol{\sigma}$, $\ol{\tau}$ be the \glspl{face} of $\sigma'', \tau''$ opposite to $\bcentre \delta$. Then $\sigma'' \cap \tau''$ is spanned by $\bcentre \delta$ and $\ol{\sigma}'' \cap \ol{\tau}''$. But $\ol{\sigma}'' \cap \ol{\tau}'' \subset \bound \delta$, which has a smaller \gls{scdim} than $\sigma$, so can suppose it is a \gls{simp} of $\bound \delta$ by induction on \gls{scdim}. If $\sigma''$ or $\tau''$ does not contain $\bcentre \delta$, then $\sigma'' \cap \tau'' \subset \bound \delta$, so again finish by induction on \gls{scdim}. $\polyh|K\subdiv| = \polyh|K|$: Note $\simplex< \bcentre{\sigma_0}, \bcentre{\sigma_1}, \ldots, \bcentre{\sigma_p}> \face \sigma_p \face \polyh|K|$, so $\polyh|K\subdiv| \subseteq \polyh|K|$. Conversely, if $x \in \sigma = \simplex \subset \polyh|H|$ is written as \[ x = \sum_{i = 0}^p t_i a_i ,\] can reorder the $a_i$ so that $t_0 \ge t_1 \ge t_2 \ge \cdots \ge t_p$, so \begin{align*} x &= \ub{(t_0 - 1)}_{\ge 0}a_0 + 2\ub{(t_1 - t_2)}_{\ge 0} \left( \frac{a_0 + a_1}{2} \right) + 3\ub{(t_2 - t_3)}_{\ge 0} \left( \frac{a_0 + a_1 + a_2}{3} \right) + \cdots \\ &= (t_0 - t_1) \bcentre{\simplex} + 2(t_1 - t_1)\bcentre{\simplex} + 3(t_2 - t_3) \bcentre{\simplex} + \cdots \\ &\in \simplex<\bcentre{\simplex}, \bcentre{\simplex}, \ldots, \bcentre{\simplex}> \\ &\subseteq \polyh|K\subdiv| \qedhere \end{align*}} \end{proof} \end{flashcard}