%! TEX root = AlgT.tex % vim: tw=50 % 16/02/2024 11AM \setcounter{section}{6} \setcounter{subsection}{0} \subsection{Simplicial complexes} \begin{flashcard}[affinely-indep-defn] \begin{definition*}[Affinely independent] \glsadjdefn{affindep}{affinely independent}{set of points} \cloze{A finite set of points $a_0, a_1, \ldots, a_r \in \RR^m$ is \emph{affinely independent} if \[ \begin{cases} \sum_{i = 1}^n t_i a_i = 0 \\ \text{and } \sum_{i = 1}^n t_i = 0 \end{cases} \iff (t_1, \ldots, t_n) = 0 .\]} \end{definition*} \end{flashcard} \begin{flashcard}[affindep-lemma-iff] \begin{lemma*} $a_0, \ldots, a_n \in \RR^m$ is \gls{affindep} if and only if \cloze{$a_1 - a_0, a_2 - a_0, \ldots, a_n - a_0$ is linearly independent.} \end{lemma*} \begin{proof} \cloze{Let $a_0, \ldots, a_n$ be \gls{affindep}, and suppose \[ \sum_{i = 1}^n s_i(a_i - a_0) = 0 .\] Then \[ \left( -\sum_{i = 1}^n s_i \right) a_0 + s_1 a_1 + \cdots + s_n a_n = 0 \] and \[ \left( -\sum_{i = 1}^n s_i \right) + s_1 + \cdots + s_n = 0 \] hence $(s_1, \ldots, s_n) = 0$. So $a_1 - a_0, \ldots, a_n - a_0$ are linearly independent. Similarly for the converse.} \end{proof} \end{flashcard} \begin{flashcard}[n-simplex-defn] \begin{definition*}[$n$-simplex] \glsnoundefn{vert}{vertex}{vertices}% \glsnoundefn{nsimp}{$n$-simplex}{$n$-simplexes}% \glsnoundefn{simp}{simplex}{simplexes} \glsnoundefn{bcoord}{barycentric coordinate}{barycentric coordinates} \glssymboldefn{simplexspan}{$\langle a_0, \ldots, a_n \rangle$}{$\langle a_0, \ldots, a_n \rangle$} \cloze{If $a_0, \ldots, a_n \in \RR^m$ are \gls{affindep}, then they define an \emph{$n$-simplex} \[ \sigma = \langle a_0, \ldots, a_n \rangle = \left\{ \sum_{i = 0}^n t_i a_i ~\Bigg|~ \sum_{i = 0}^n t_i = 1 \text{ and }t_i \ge 0 \right\} \subseteq \RR^m \] given by the convex hull of the points $a_0, \ldots, a_n$. These are called the \emph{vertices} of $\sigma$, and we say that they \emph{span} $\sigma$. If $x \in \langle a_0, \ldots, a_n \rangle$, then $x$ can be written \emph{uniquely} as $x = \sum_{i = 0}^n t_i a_i$ for real numbers $t_0, \ldots, t_n$ summing to $1$. Call the $t_i$'s the \emph{barycentric coordinates} of $x$. } \end{definition*} \end{flashcard} \begin{flashcard}[face-defn] \begin{definition*}[Face] \glsnoundefn{face}{face}{faces} \glssymboldefn{faceof}{$\le$}{$\le$} \glssymboldefn{propface}{$<$}{$<$} \cloze{A \emph{face} of a \gls{nsimp} $\sigma = \simplex$ is a \gls{simp} $\tau$ spanned by a subset of $\{a_0, \ldots, a_n\}$. Write $\tau \le \sigma$. Write $\tau < \sigma$ if $\tau$ is a proper face.} \end{definition*} \end{flashcard} \begin{flashcard}[simplex-boundary-defn] \begin{definition*}[Boundary] \glsnoundefn{bound}{boundary}{boundaries} \glssymboldefn{bound}{$\partial$}{$\partial$} \cloze{The \emph{boundary} of a \gls{simp} $\sigma$, written $\partial \sigma$ is the union of all its proper \glspl{face}.} \end{definition*} \end{flashcard} \begin{flashcard}[simplex-interior-defn] \begin{definition*}[Interior] \glssymboldefn{interior}{interior}{interior} \glsnoundefn{int}{interior}{interiors} \cloze{The \emph{interior} of $\sigma$, written $\mathring{\sigma}$, is $\sigma - \bound \sigma$.} \end{definition*} \end{flashcard} \begin{flashcard}[p-simplex-homeo-lemma] \begin{lemma*} Let $\sigma$ be a \nsimp{p} in $\RR^m$ and $\tau$ be a \nsimp{p} in $\RR^n$. Then $\sigma$ and $\tau$ are homeomorphic. \end{lemma*} \begin{proof} \cloze{Let $\sigma = \simplex$, $\tau = \simplex$. Define \begin{align*} h : \sigma &\to \tau \\ \sum_{i = 0}^p t_i a_i &\mapsto \sum_{i = 0}^p t_i b_i \end{align*} This is well-defined and a bijection, by uniqueness of \glspl{bcoord}. As the $a_i - a_0$ are linearly independent, $h$ extends to an affine map $\hat{h} : \RR^n \to \RR^m$, so $h$ is continuous. So is its inverse.} \end{proof} \end{flashcard} \begin{flashcard}[geometric-simplicial-complex-defn] \begin{definition*}[Geometric simplicial complex] \glsnoundefn{gsimpcomp}{geometric simplicial complex}{geometric simplicial complexes} \glsnoundefn{simpcomp}{simplicial complex}{simplicial complexes} \cloze{A \emph{geometric (or Euclidean) simplicial complex} in $\RR^m$ is a finite set $K$ of \glspl{simp} in $\RR^m$ such that: \begin{enumerate}[(i)] \item If $\sigma \in K$ and $\tau \face \sigma$, then $\tau \in K$. \item If $\sigma, \tau \in K$, then $\sigma \cap \tau = \emptyset$ or $\sigma \cap \tau$ is a \gls{face} of $\sigma$ and of $\tau$. \end{enumerate}} \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{center} \includegraphics[width=0.6\linewidth]{images/0536688fee704ce0.png} \end{center} \end{example*} \begin{flashcard}[dimension-defn] \begin{definition*}[Dimension of a simplicial complex] \glsadjdefn{scdim}{dimension}{\gls{simpcomp}} \cloze{The \emph{dimension} of a \gls{simpcomp} $K$ is the largest $p$ such that $K$ contains a \nsimp{p}.} \end{definition*} \end{flashcard} \begin{flashcard}[polyhedron-of-simpcomp-defn] \begin{definition*}[Polyhedron of a simplicial complex] \glsnoundefn{polyh}{polyhedron}{polyhedra} \glssymboldefn{polyh}{$|K|$}{$|K|$} \cloze{The \emph{polyhedron} of $K$ is the space \[ |K| = \bigcup_{\sigma \in K} \sigma \subseteq \RR^m .\]} \end{definition*} \end{flashcard} \begin{remark*} $\polyh|K|$ is compact and Hausdorff. \end{remark*} \begin{flashcard}[d-skeleton-defn] \begin{definition*}[$d$-skeleton of a simplicial complex] \glssymboldefn{dskel}{$K_{(d)}$}{$K_{(d)}$} \cloze{The \emph{$d$-skeleton} $K_{(d)}$ of $K$ is the sub-\gls{simpcomp} containing all \glspl{simp} of $K$ of \gls{scdim} $\le d$.} \end{definition*} \end{flashcard} \begin{flashcard}[triangulation-defn] \begin{definition*}[Triangulation] \glsnoundefn{triang}{triangulation}{triangulations} \cloze{A \emph{triangulation} of a space $X$ is a \gls{gsimpcomp} $K$ and a homeomorphism $h : \polyh|K| \homeoto X$.} \end{definition*} \end{flashcard} \begin{example*} \glssymboldefn{ssimp}{$\Delta$}{$\Delta$} The \emph{standard \nsimp{n}} is $\Delta^n = \simplex \subseteq \RR^{n + 1}$. It, along with its \glspl{face}, defines a \gls{simpcomp}. \begin{center} \includegraphics[width=0.6\linewidth]{images/94c2e8334ae546be.png} \end{center} \end{example*} \begin{example*} The \emph{simplicial $(n - 1)$-sphere} is the \gls{simpcomp} given by the proper \glspl{face} of $\ssimp^n$. Its \gls{polyh} is $\bound \ssimp^n \subseteq \RR^{n + 1}$. \end{example*} \begin{example*} In $\RR^{n + 1}$ consider the $2^{n + !}$ \glspl{simp} given by $\simplex<\pm e_1, \pm e_2, \ldots, \pm e_{n + 1}>$ and let $K$ be given by these and all their faces. \begin{center} \includegraphics[width=0.6\linewidth]{images/d5d6d19e12ae417e.png} \end{center} Define \begin{align*} h : \RR{n + 1} \setminus \{0\} \supseteq \polyh|K| &\to S^n \\ x &\mapsto \frac{x}{|x|} \end{align*} this is continuous, and a bijection. As $\polyh|K|$ and $S^n$ are compact Hausdorff, it is a homeomorphism. \end{example*} \begin{flashcard}[simplicial-map-defn] \begin{definition*}[Simplicial map] \glsnoundefn{simpmap}{simplicial map}{simplicial maps} \glssymboldefn{VK}{$V_K$}{$V_K$} \cloze{ Write $V_K$ for the set of \glspl{vert} (i.e. the $0$-simplces) of $K$. A \emph{simplicial map} $f$ from $K$ to $L$ is a frunction $f : V_K \to V_L$ such that if $\sigma = \simplex \in K$ then $\{f(a_0), \ldots, f(a_n)\}$ spans a \gls{simp} of $L$, called $f(\sigma)$. Write $f : K \to L$.} \end{definition*} \end{flashcard} \begin{example*} The map \begin{align*} f : \ssimp^1 &\to \ssimp^2 \\ (1, 0) &\mapsto (1, 0, 0) \\ (0, 1) &\mapsto (0, 1, 0) \end{align*} \begin{center} \includegraphics[width=0.6\linewidth]{images/0c83c74143dc4f9b.png} \end{center} \end{example*} \begin{example*} The map \begin{align*} g : \ssimp^2 &\to \ssimp^1 \\ (1, 0, 0) &\mapsto (1, 0) \\ (0, 1, 0) &\mapsto (1, 0) \\ (0, 0, 1) &\mapsto (0, 1) \end{align*} \begin{center} \includegraphics[width=0.6\linewidth]{images/082ce9b3f7834661.png} \end{center} \end{example*}