%! TEX root = AlgT.tex % vim: tw=50 % 14/02/2024 11AM \begin{flashcard}[attaching-n-cell-fundamental-group-thm] \begin{theorem*} \phantom{} \begin{enumerate}[(i)] \item If $n \ge 3$, then $\ps{\inc} : \pio\bs(X, x_0) \to \pio\bs(Y, [x_0])$ is \cloze{an isomorphism.} \item If $n = 2$, then $\ps{\inc} : \pio\bs(X, x_0) \to \pio\bs(Y, [x_0])$ is \cloze{the quotient by the normal subgroup generated by $[f] \in \pio\bs(X, x_0)$.} \end{enumerate} \end{theorem*} \begin{proof} \cloze{Let $U = \int(D^n)$, $V = X \cup_f (D^n - \{0\})$. These give an open cover of $Y$. Choose a \gls{path} $u$ in $U \cap V$ from $y_0$ to some $y_1 \in \int(D^n) = U$. \begin{center} \includegraphics[width=0.6\linewidth]{images/af5fa1d36c5f41dd.png} \end{center} If $n \ge 3$ then: \begin{enumerate}[(i)] \item $U \homoteq \{*\}$. \item $U \cap V = S^{n - 1} \times (0, 1)$ is \gls{simpconn}. \end{enumerate} So \nameref{SVK} gives us: \[ \pio\bs(U, y_1) \freepH{\ub{\pio\bs(U \cap V, y_1)}_{=\pio\bs(V, y_1)}} \pio\bs(V, y_1) \simto \pio\bs(Y, y_1) .\] So also, by change of basepoint isomorphism, we get \[ \pio\bs(V, y_0) \simto \pio\bs(Y, y_0) .\] But $V$ \glsref[retract]{strongly deformation retracts} to $X$, so: \[ \pio\bs(X, y_0) \simto \pio\bs(V, y_0) \simto \pio\bs(Y, y_0) .\] If $n = 2$ then: \begin{enumerate}[(i)] \item $U \homoteq \{*\}$. \item $U \cap V \cong S^1 \times (0, 1)$. \end{enumerate} Now \nameref{SVK} gives us: \[ \ub{\pio\bs(U, y_1)}_{\{e\}} \freepH{\ub{\pio\bs(U \cap V, y_1)}_{= \ZZ \ni 1}} \pio\bs(V, y_1) \simto \pio\bs(Y, y_1) .\] The $1 \in \ZZ$ corresponds to $e$ in $\pio\bs(U, y_1)$, and corresponds to $\pathisom{\invpath u} ([f])$ in $\pio\bs(V, y_1)$. So \[ \frac{\pio\bs(V, y_1)}{\relgen{\pathisom{\invpath u}[f]}} \simto \pio\bs(Y, y_0) \] Then change of basepoint and using the fact that $V$ strongly deformation retracts to $X$, we get \[ \frac{\pio\bs(X, y_0)}{\relgen{[f]}} \simto \frac{\pio\bs(V, y_0)}{\relgen{[f]}} \simto \pio\bs(Y, y_0) . \qedhere \]} \end{proof} \end{flashcard} \begin{example*} The torus $T$: \begin{center} \includegraphics[width=0.6\linewidth]{images/f7c6b5636eaa41ee.png} \end{center} has a \gls{cellstruc} with: \begin{enumerate} \item A $0$-cell $x_0$, \item $1$-cells $a, b$, \item A $2$-cell. \end{enumerate} The $1$-skeleton is: \begin{center} \includegraphics[width=0.6\linewidth]{images/9a121798dce1423d.png} \end{center} So \[ \pio\bs(T^1, x_0) = \gpgen ,\] and so \[ \pio\bs(T, x_0) = \gpgen \cong \ZZ \times \ZZ .\] \end{example*} \begin{flashcard}[group-as-dimensional-based-cell-complex-coro] \begin{corollary*} For $G = \gpgen$ with $S, R$ finite, there is a $2$-dimensional based \glsref[cellstruc]{cell complex} $\bs(X, x_0)$ with $\pio\bs(X, x_0) \cong G$. \end{corollary*} \begin{proof} \cloze{Let $Y$ be the wedge of $|S|$-many circles. Sending $s \in S$ to the $s$-th circle $x_s$ gives an isomorphism \[ \gpgen \simto \pio\bs(Y, y_0) .\] \begin{center} \includegraphics[width=0.3\linewidth]{images/6128904363d5450d.png} \end{center} Each $r \in R$ is an element of $\gpgen$, so gives a $[\gamma_r] \in \pio\bs(Y, y_0)$. Attaching $2$-cells to $Y$ along $\{\gamma_r\}_{r \in R}$ gives an $\bs(X, x_0)$ with \[ \pio\bs(X, x_0) = \frac{\gpgen}{\relgen{r \in R}} = \gpgen . \qedhere \]} \end{proof} \end{flashcard} \subsection{A refinement of Seifert-van Kampen} \begin{flashcard}[nbd-deformation-retract-defn] \begin{definition*}[Neighbourhood deformation retract] \glsnoundefn{ndr}{neighbourhood deformation retract}{neighbourhood deformation retracts} \cloze{A subset $A \subset X$ is called a \emph{neighbourhood deformation retract} (NDR) if there is an open neighbourhood $A \subset U \subset X$ and $U$ \glsref[retract]{\emph{strongly} deformation retracts} to $A$.} \end{definition*} \end{flashcard} \begin{flashcard}[SVK-refinement] \begin{theorem*}[Refinement of Seifert-van Kampen] \cloze{Let $X$ be a space, $A, B \subset X$ closed subsets which cover $X$ and such that $A cap B$ is \gls{pathconn} and is a \gls{ndr} in both $A$ and $B$. Then \[ \pio\bs(A, x_0) \freepH{\pio\bs(A \cap B, x_0)} \pio\bs(B, x_0) \simto \pio\bs(X, x_0) .\]} \end{theorem*} \begin{proof} Let $A \cap B \subset U \subset A$, $A \cap B \subset V \subset B$, $U, V$ open, which \glsref[retract]{strongly deformation retract} to $A \cap B$. Observe \[ (A \cup V)^c = B - V \qquad (B \cup U)^c = A - U \] are closed, so $A \cup V$, $B \cup U$ is an open cover of $X$. \begin{center} \includegraphics[width=0.6\linewidth]{images/d1169e7335e84e90.png} \end{center} The \glsref[retract]{strong deformation retracts} of $U$ and $V$ to $A \cap B$ glue to give a deformation of $(A \cup V) \cap (B \cup U) = U \cap V$ to $A \cap B$. Then we get deformations of $A \cup V$ to $A$ and $B \cup U$ to $B$. Now we use \nameref{SVK} for the open cover and we get: \[ \begin{tikzcd}[ampersand replacement=\&] \pio(B) \ar[d, "\sim"] \& \pio(A \cap B) \ar[l] \ar[r], \ar[d, "\sim"] \& \pio(A) \ar[d, "\sim"] \\ \pio(B \cup U) \& \pio((A \cup V) \cap (B \cup U)) \ar[l] \ar[r] \& \pio(A \cup V) \end{tikzcd} \qedhere \] \end{proof} \end{flashcard} \subsection{Surfaces} \begin{example*} \begin{center} \includegraphics[width=0.3\linewidth]{images/ce42214e24b440e0.png} \end{center} LHS \glsref[retract]{strongly deformation retracts} to \begin{center} \includegraphics[width=0.3\linewidth]{images/698c611bd0b14edc.png} \end{center} So \[ \pio\bs(X, x_0) = \gpgen ,\] with $[r] = aba^{-1}b^{-1}$. Applying \nameref{SVK} several times gives: \[ \pio\bs(F_g, x_0) \cong \gpgen \] \begin{center} \includegraphics[width=0.3\linewidth]{images/691c7126206a4828.png} \end{center} The boundary is $r_1 r_2 \cdots r_g$, so attaching a $2$-cell along it to get $\Sigma_g$, \[ \pio\bs(\Sigma_g, x_0) = \gpgen \] \begin{center} \includegraphics[width=0.6\linewidth]{images/5848469900084d9c.png} \end{center} \end{example*} \begin{example*} $\RR\PP^2$: \begin{center} \includegraphics[width=0.6\linewidth]{images/a2ad28aa20234967.png} \end{center} Has $1$-skeleton \begin{center} \includegraphics[width=0.6\linewidth]{images/6aeeede4c9704db9.png} \end{center} $2$-cell is attached along $aa$. So \[ \pio\bs(\RR\PP^2, *) \cong \gpgen = \ZZ / 2\ZZ .\] \end{example*} \begin{example*} \phantom{} \begin{center} \includegraphics[width=0.6\linewidth]{images/2017ce3e51d34070.png} \end{center} $Y \homoteq S^1$, so \[ \pio\bs(Y, y_0) = \gpgen ,\] and $[r] = a^2 \in \pio\bs(Y, y_0)$. \nameref{SVK} again: \[ \pio\bs(E_n, y_0) \cong \gpgen \] \begin{center} \includegraphics[width=0.6\linewidth]{images/74f7c13c4ca34896.png} \end{center} The boundary is $r_1 r_2 \cdots r_n$, so attaching a $2$-cell along it to get a closed surface $S_n$, we get \[ \pio\bs(S_n, y_0) = \gpgen .\] \end{example*}