%! TEX root = AlgT.tex
% vim: tw=50
% 14/02/2024 11AM
\begin{flashcard}[attaching-n-cell-fundamental-group-thm]
\begin{theorem*}
\phantom{}
\begin{enumerate}[(i)]
\item If $n \ge 3$, then $\ps{\inc} :
\pio\bs(X, x_0) \to \pio\bs(Y, [x_0])$ is \cloze{an
isomorphism.}
\item If $n = 2$, then $\ps{\inc} : \pio\bs(X,
x_0) \to \pio\bs(Y, [x_0])$ is \cloze{the quotient
by the normal subgroup generated by $[f] \in
\pio\bs(X, x_0)$.}
\end{enumerate}
\end{theorem*}
\begin{proof}
\cloze{Let $U = \int(D^n)$, $V = X \cup_f (D^n -
\{0\})$. These give an open cover of $Y$. Choose
a \gls{path} $u$ in $U \cap V$ from $y_0$ to
some
$y_1 \in \int(D^n) = U$.
\begin{center}
\includegraphics[width=0.6\linewidth]{images/af5fa1d36c5f41dd.png}
\end{center}
If $n \ge 3$ then:
\begin{enumerate}[(i)]
\item $U \homoteq \{*\}$.
\item $U \cap V = S^{n - 1} \times (0, 1)$ is
\gls{simpconn}.
\end{enumerate}
So \nameref{SVK} gives us:
\[ \pio\bs(U, y_1) \freepH{\ub{\pio\bs(U \cap V,
y_1)}_{=\pio\bs(V, y_1)}} \pio\bs(V, y_1) \simto
\pio\bs(Y, y_1) .\]
So also, by change of basepoint isomorphism, we
get
\[ \pio\bs(V, y_0) \simto \pio\bs(Y, y_0) .\]
But $V$ \glsref[retract]{strongly deformation
retracts} to $X$, so:
\[ \pio\bs(X, y_0) \simto \pio\bs(V, y_0)
\simto \pio\bs(Y, y_0) .\]
If $n = 2$ then:
\begin{enumerate}[(i)]
\item $U \homoteq \{*\}$.
\item $U \cap V \cong S^1 \times (0, 1)$.
\end{enumerate}
Now \nameref{SVK} gives us:
\[ \ub{\pio\bs(U, y_1)}_{\{e\}} \freepH{\ub{\pio\bs(U \cap V,
y_1)}_{= \ZZ \ni 1}} \pio\bs(V, y_1) \simto
\pio\bs(Y, y_1) .\]
The $1 \in \ZZ$ corresponds to $e$ in
$\pio\bs(U, y_1)$, and corresponds to
$\pathisom{\invpath u} ([f])$ in $\pio\bs(V,
y_1)$. So
\[ \frac{\pio\bs(V,
y_1)}{\relgen{\pathisom{\invpath u}[f]}} \simto
\pio\bs(Y, y_0) \]
Then change of basepoint and using the fact that
$V$ strongly deformation retracts to $X$, we get
\[ \frac{\pio\bs(X, y_0)}{\relgen{[f]}} \simto
\frac{\pio\bs(V, y_0)}{\relgen{[f]}} \simto
\pio\bs(Y, y_0) . \qedhere \]}
\end{proof}
\end{flashcard}
\begin{example*}
The torus $T$:
\begin{center}
\includegraphics[width=0.6\linewidth]{images/f7c6b5636eaa41ee.png}
\end{center}
has a \gls{cellstruc} with:
\begin{enumerate}
\item A $0$-cell $x_0$,
\item $1$-cells $a, b$,
\item A $2$-cell.
\end{enumerate}
The $1$-skeleton is:
\begin{center}
\includegraphics[width=0.6\linewidth]{images/9a121798dce1423d.png}
\end{center}
So
\[ \pio\bs(T^1, x_0) = \gpgen ,\]
and so
\[ \pio\bs(T, x_0) = \gpgen
\cong \ZZ \times \ZZ .\]
\end{example*}
\begin{flashcard}[group-as-dimensional-based-cell-complex-coro]
\begin{corollary*}
For $G = \gpgen$ with $S, R$ finite, there
is a $2$-dimensional based
\glsref[cellstruc]{cell complex} $\bs(X, x_0)$
with $\pio\bs(X, x_0) \cong G$.
\end{corollary*}
\begin{proof}
\cloze{Let $Y$ be the wedge of $|S|$-many circles.
Sending $s \in S$ to the $s$-th circle $x_s$
gives an isomorphism
\[ \gpgen \simto \pio\bs(Y, y_0) .\]
\begin{center}
\includegraphics[width=0.3\linewidth]{images/6128904363d5450d.png}
\end{center}
Each $r \in R$ is an element of $\gpgen$, so
gives a $[\gamma_r] \in \pio\bs(Y, y_0)$.
Attaching $2$-cells to $Y$ along
$\{\gamma_r\}_{r \in R}$ gives an $\bs(X, x_0)$
with
\[ \pio\bs(X, x_0) = \frac{\gpgen}{\relgen{r
\in R}} = \gpgen . \qedhere \]}
\end{proof}
\end{flashcard}
\subsection{A refinement of Seifert-van Kampen}
\begin{flashcard}[nbd-deformation-retract-defn]
\begin{definition*}[Neighbourhood deformation
retract]
\glsnoundefn{ndr}{neighbourhood deformation
retract}{neighbourhood deformation retracts}
\cloze{A subset $A \subset X$ is called a
\emph{neighbourhood deformation retract} (NDR)
if there is an open neighbourhood $A \subset U
\subset X$ and $U$ \glsref[retract]{\emph{strongly} deformation
retracts} to $A$.}
\end{definition*}
\end{flashcard}
\begin{flashcard}[SVK-refinement]
\begin{theorem*}[Refinement of Seifert-van Kampen]
\cloze{Let $X$ be a space, $A, B \subset X$ closed
subsets which cover $X$ and such that $A cap B$
is \gls{pathconn} and is a \gls{ndr} in both $A$
and $B$. Then
\[ \pio\bs(A, x_0) \freepH{\pio\bs(A \cap B,
x_0)} \pio\bs(B, x_0) \simto \pio\bs(X, x_0)
.\]}
\end{theorem*}
\begin{proof}
Let $A \cap B \subset U \subset A$, $A \cap B
\subset V \subset B$, $U, V$ open, which
\glsref[retract]{strongly deformation retract}
to $A \cap B$. Observe
\[ (A \cup V)^c = B - V \qquad (B \cup U)^c = A
- U \]
are closed, so $A \cup V$, $B \cup U$ is an open
cover of $X$.
\begin{center}
\includegraphics[width=0.6\linewidth]{images/d1169e7335e84e90.png}
\end{center}
The \glsref[retract]{strong deformation retracts} of
$U$ and $V$ to $A \cap B$ glue to give a
deformation of $(A \cup V) \cap (B \cup U) = U
\cap V$ to $A \cap B$. Then we get deformations
of $A \cup V$ to $A$ and $B \cup U$ to $B$. Now
we use \nameref{SVK} for the open cover and we
get:
\[ \begin{tikzcd}[ampersand replacement=\&]
\pio(B) \ar[d, "\sim"]
\& \pio(A \cap B) \ar[l] \ar[r], \ar[d, "\sim"]
\& \pio(A) \ar[d, "\sim"] \\
\pio(B \cup U)
\& \pio((A \cup V) \cap (B \cup U)) \ar[l]
\ar[r]
\& \pio(A \cup V)
\end{tikzcd} \qedhere \]
\end{proof}
\end{flashcard}
\subsection{Surfaces}
\begin{example*}
\begin{center}
\includegraphics[width=0.3\linewidth]{images/ce42214e24b440e0.png}
\end{center}
LHS \glsref[retract]{strongly deformation
retracts} to
\begin{center}
\includegraphics[width=0.3\linewidth]{images/698c611bd0b14edc.png}
\end{center}
So
\[ \pio\bs(X, x_0) = \gpgen ,\]
with $[r] = aba^{-1}b^{-1}$.
Applying \nameref{SVK} several times gives:
\[ \pio\bs(F_g, x_0) \cong \gpgen \]
\begin{center}
\includegraphics[width=0.3\linewidth]{images/691c7126206a4828.png}
\end{center}
The boundary is $r_1 r_2 \cdots r_g$, so
attaching a $2$-cell along it to get $\Sigma_g$,
\[ \pio\bs(\Sigma_g, x_0) = \gpgen \]
\begin{center}
\includegraphics[width=0.6\linewidth]{images/5848469900084d9c.png}
\end{center}
\end{example*}
\begin{example*}
$\RR\PP^2$:
\begin{center}
\includegraphics[width=0.6\linewidth]{images/a2ad28aa20234967.png}
\end{center}
Has $1$-skeleton
\begin{center}
\includegraphics[width=0.6\linewidth]{images/6aeeede4c9704db9.png}
\end{center}
$2$-cell is attached along $aa$. So
\[ \pio\bs(\RR\PP^2, *) \cong \gpgen =
\ZZ / 2\ZZ .\]
\end{example*}
\begin{example*}
\phantom{}
\begin{center}
\includegraphics[width=0.6\linewidth]{images/2017ce3e51d34070.png}
\end{center}
$Y \homoteq S^1$, so
\[ \pio\bs(Y, y_0) = \gpgen ,\]
and $[r] = a^2 \in \pio\bs(Y, y_0)$.
\nameref{SVK} again:
\[ \pio\bs(E_n, y_0) \cong \gpgen \]
\begin{center}
\includegraphics[width=0.6\linewidth]{images/74f7c13c4ca34896.png}
\end{center}
The boundary is $r_1 r_2 \cdots r_n$, so
attaching a $2$-cell along it to get a closed
surface $S_n$, we get
\[ \pio\bs(S_n, y_0) = \gpgen .\]
\end{example*}