%! TEX root = AlgT.tex % vim: tw=50 % 12/02/2024 11AM \begin{example*} The function \begin{align*} \{a, b\} &\to \ZZ / 3\ZZ \\ a &\mapsto 1 \\ b &\mapsto 1 \end{align*} gives a homomorphism $\varphi : \gpgen = \pio\bs(S^1 \swedge S^2, x_0) \to \ZZ / 3\ZZ$, surjective. So \[ K = \Ker(\varphi) \le \pio\bs(S^1 \swedge S^1, x_0) \] is a subgroup of index $3$. This corresponds to a \gls{covsp}. What is it? It is a $p : \tilde{X} \to X$ with \[ p^{-1}(x_0) \cong \frac{\pio\bs(S^1 \swedge S^1, x_0)}{K} \cong \ZZ / 3\ZZ .\] \begin{center} \includegraphics[width=0.3\linewidth]{images/5183103afee243af.png} \end{center} \end{example*} \begin{example*} Consider \begin{align*} \{a, b\} &\to \ZZ / 3\ZZ \\ a &\mapsto 1 \\ b &\mapsto 0 \end{align*} again giving a $\varphi : \pio\bs(S^1 \swedge S^1, x_0) = \gpgen \surjto \ZZ / 3\ZZ$, with kernel $K$. What is the \gls{covsp} corresponding to $K$? \begin{center} \includegraphics[width=0.3\linewidth]{images/0dd93c733be04f15.png} \end{center} \end{example*} \begin{example*} The \gls{unicov} of $S^1 \swedge S^1$? \begin{center} \includegraphics[width=0.6\linewidth]{images/399920e58c8046a7.png} \end{center} \end{example*} \begin{flashcard}[SVK-proof] \prompt{Proof of \nameref{SVK}? \\} \begin{proof}[Proof of \nameref{SVK} (non-examinable)] \cloze{Without loss of generality can assume $A, B$ are \gls{pathconn}. \begin{enumerate}[(1)] \item \textbf{$\phi$ surjective:} Let $\gamma : I \to X$ be a gloop. Then $\{\gamma^{-1}(A), \gamma^{-1}(B)\}$ is an open cover of $I$, so by \nameref{lebesgue_number_lemma} there is a $n \gg 0$ such that each $\left[ \frac{i}{n}, \frac{i + 1}{n} \right]$ is sent into $A$ or $B$ (or both). By concatenating intervls which lie in $A$, or in $B$, can write $\gamma = \gamma_1 \concat \gamma_2 \cdots \gamma_k$ with each $\gamma_i$ being endpoints in $A \swedge B$. Chooce paths $u_i$ from $\gamma_i(1)$ to $x_0$ in $A \swedge B$. \begin{center} \includegraphics[width=0.6\linewidth]{images/a9d841ee262f4187.png} \end{center} Then $\gamma \homotopic (\gamma_1 \concat u_i) \concat (\invpath{u_i} \concat \gamma_2 u_2) \concat (\invpath{u_2} \concat \gamma_3 \concat u_3) \cdots (\invpath{u_{k - 1}} \concat \gamma_k)$. Each thing in a pair of brackets is a loop based at $x_0$, lying in $A$ or in $B$. So $[\gamma] \in \Im(\phi)$ as required. \item \textbf{$\phi$ is injective:} The group \[ \pio\bs(A, x_0) \freepH{\pio\bs(A \swedge B, x_0)} \pio\bs(B, x_0) \] by the following description. It is generated by \begin{enumerate}[(i)] \item For $\gamma : I \to A$ a loop in $A$, $[\gamma]_A$. \item For $\gamma : I \to B$ a loop in $B$, $[\gamma]_B$. \end{enumerate} With relations: \begin{enumerate}[(i)] \item If $\gamma \homotopic \gamma'$ in $A$, then $[\gamma]_A = [\gamma']_A$, and similarly for $B$. \item If $\gamma : I \to A \cap B$ then $[\gamma]_A = [\gamma]_B$. \item $[\gamma]_A \concat [\gamma']_A = [\gamma \concat \gamma']_A$, and similarly for $B$. \end{enumerate} Suppose \[ \phi([\gamma_1]_{A_{i_1}} \concat [\gamma_2]_{A_{i_2}} \cdots [\gamma_n]_{A_{i_n}}) = [\constpath{x_0}] \] so $\gamma_1 \cdots \gamma_k \homotopic_H \constpath{x_)}$ in $X$, $H : I \times I \to X$. Can subdivide $I \times I$ into squares of size $\frac{1}{N}$ with $n \mid N$ such that each square is sent into $A$ or $B$ (or both). \begin{center} \includegraphics[width=0.3\linewidth]{images/fba11cca6c644141.png} \end{center} Choose \glspl{path} $i_{ij}$ from $H \left( \frac{i}{N}, \frac{j}{N} \right)$ to $x_0$ such that: \begin{itemize} \item If it is a vertex of a box labelled $A$, the path is in $A$. \item If it is a vertex of a box labelled $B$, the path is in $B$. \end{itemize} \begin{center} \includegraphics[width=0.3\linewidth]{images/9403c4563aee46e0.png} \end{center} $G$ has the property that it decomposes into rectangles with vertices sent to $x_0$, and each rectangle in $A$ or in $B$. This shows that $[\gamma_1]_{A_1} \cdots [\gamma_n]_{A_n}$ can be transformed using the 3 kinds of relations described. \end{enumerate} } \end{proof} \end{flashcard} \subsection{Attaching a cell} Let $f : \bs(S^{n - 1}, *) \to \bs(X, x_0)$, then \[ Y = X \cup_f D^n = \frac{X \sqcup D^n}{f(x) \sim x \in \partial D^n = S^{n - 1}} \] Then $[x_0] \in Y$ is a basepoint, and the inclusion $\bs(X, x_0) \injto \bs(Y, [x_0])$ is a \gls{bsmap}.