%! TEX root = AlgT.tex
% vim: tw=50
% 12/02/2024 11AM
\begin{example*}
The function
\begin{align*}
\{a, b\}
&\to \ZZ / 3\ZZ \\
a
&\mapsto 1 \\
b
&\mapsto 1
\end{align*}
gives a homomorphism $\varphi : \gpgen =
\pio\bs(S^1 \swedge S^2, x_0) \to \ZZ / 3\ZZ$,
surjective. So
\[ K = \Ker(\varphi) \le \pio\bs(S^1 \swedge
S^1, x_0) \]
is a subgroup of index $3$. This corresponds to
a \gls{covsp}. What is it? It is a $p :
\tilde{X} \to X$ with
\[ p^{-1}(x_0) \cong \frac{\pio\bs(S^1 \swedge
S^1, x_0)}{K} \cong \ZZ / 3\ZZ .\]
\begin{center}
\includegraphics[width=0.3\linewidth]{images/5183103afee243af.png}
\end{center}
\end{example*}
\begin{example*}
Consider
\begin{align*}
\{a, b\}
&\to \ZZ / 3\ZZ \\
a
&\mapsto 1 \\
b
&\mapsto 0
\end{align*}
again giving a $\varphi : \pio\bs(S^1 \swedge
S^1, x_0) = \gpgen \surjto \ZZ / 3\ZZ$,
with kernel $K$. What is the \gls{covsp}
corresponding to $K$?
\begin{center}
\includegraphics[width=0.3\linewidth]{images/0dd93c733be04f15.png}
\end{center}
\end{example*}
\begin{example*}
The \gls{unicov} of $S^1 \swedge S^1$?
\begin{center}
\includegraphics[width=0.6\linewidth]{images/399920e58c8046a7.png}
\end{center}
\end{example*}
\begin{flashcard}[SVK-proof]
\prompt{Proof of \nameref{SVK}? \\}
\begin{proof}[Proof of \nameref{SVK}
(non-examinable)]
\cloze{Without loss of generality can assume $A, B$ are
\gls{pathconn}.
\begin{enumerate}[(1)]
\item \textbf{$\phi$ surjective:} Let $\gamma
: I \to X$ be a gloop. Then
$\{\gamma^{-1}(A), \gamma^{-1}(B)\}$ is an
open cover of $I$, so by
\nameref{lebesgue_number_lemma} there is a
$n \gg 0$ such that each $\left[
\frac{i}{n}, \frac{i + 1}{n} \right]$ is
sent into $A$ or $B$ (or both). By
concatenating intervls which lie in $A$, or
in $B$, can write $\gamma = \gamma_1 \concat
\gamma_2 \cdots \gamma_k$ with each
$\gamma_i$ being endpoints in $A \swedge B$.
Chooce paths $u_i$ from $\gamma_i(1)$ to
$x_0$ in $A \swedge B$.
\begin{center}
\includegraphics[width=0.6\linewidth]{images/a9d841ee262f4187.png}
\end{center}
Then $\gamma \homotopic (\gamma_1 \concat
u_i) \concat (\invpath{u_i} \concat \gamma_2
u_2) \concat (\invpath{u_2} \concat \gamma_3
\concat u_3) \cdots (\invpath{u_{k - 1}}
\concat \gamma_k)$. Each thing in a pair of
brackets is a loop based at $x_0$, lying in
$A$ or in $B$. So $[\gamma] \in \Im(\phi)$
as required.
\item \textbf{$\phi$ is injective:} The group
\[ \pio\bs(A, x_0) \freepH{\pio\bs(A \swedge
B, x_0)} \pio\bs(B, x_0) \]
by the following description. It is
generated by
\begin{enumerate}[(i)]
\item For $\gamma : I \to A$ a loop in
$A$, $[\gamma]_A$.
\item For $\gamma : I \to B$ a loop in
$B$, $[\gamma]_B$.
\end{enumerate}
With relations:
\begin{enumerate}[(i)]
\item If $\gamma \homotopic \gamma'$ in
$A$, then $[\gamma]_A = [\gamma']_A$,
and similarly for $B$.
\item If $\gamma : I \to A \cap B$ then
$[\gamma]_A = [\gamma]_B$.
\item $[\gamma]_A \concat [\gamma']_A =
[\gamma \concat \gamma']_A$, and similarly
for $B$.
\end{enumerate}
Suppose
\[ \phi([\gamma_1]_{A_{i_1}} \concat
[\gamma_2]_{A_{i_2}} \cdots
[\gamma_n]_{A_{i_n}}) = [\constpath{x_0}] \]
so $\gamma_1 \cdots \gamma_k \homotopic_H
\constpath{x_)}$ in $X$, $H : I \times I \to
X$. Can subdivide $I \times I$ into squares
of size $\frac{1}{N}$ with $n \mid N$ such
that each square is sent into $A$ or $B$ (or
both).
\begin{center}
\includegraphics[width=0.3\linewidth]{images/fba11cca6c644141.png}
\end{center}
Choose \glspl{path} $i_{ij}$ from $H
\left( \frac{i}{N}, \frac{j}{N} \right)$ to
$x_0$ such that:
\begin{itemize}
\item If it is a vertex of a box labelled
$A$, the path is in $A$.
\item If it is a vertex of a box labelled
$B$, the path is in $B$.
\end{itemize}
\begin{center}
\includegraphics[width=0.3\linewidth]{images/9403c4563aee46e0.png}
\end{center}
$G$ has the property that it decomposes into
rectangles with vertices sent to $x_0$, and
each rectangle in $A$ or in $B$. This shows
that $[\gamma_1]_{A_1} \cdots
[\gamma_n]_{A_n}$ can be transformed using
the 3 kinds of relations described.
\end{enumerate}
}
\end{proof}
\end{flashcard}
\subsection{Attaching a cell}
Let $f : \bs(S^{n - 1}, *) \to \bs(X, x_0)$, then
\[ Y = X \cup_f D^n = \frac{X \sqcup D^n}{f(x)
\sim x \in \partial D^n = S^{n - 1}} \]
Then $[x_0] \in Y$ is a basepoint, and the
inclusion $\bs(X, x_0) \injto \bs(Y, [x_0])$ is a
\gls{bsmap}.