%! TEX root = AlgT.tex % vim: tw=50 % 09/02/2024 11AM \begin{flashcard}[uni-prop-of-group-pres] \begin{lemma*}[Universal property of group presentations] \label{uni_prop_gppres} For any group $H$, the function \begin{align*} \left\{ \substack{ \text{group homomorphisms} \\ \psi : \gpgen \to H } \right\} &\to \left\{ \substack{ \text{functions $\phi : S \to H$} \\ \text{such that $\phi(r) = e ~\forall r \in R$} } \right\} \\ \psi &\mapsto [S \stackrel{\mathrm{inc}}{\to} \F(S) \stackrel{\mathrm{quot}}{\to} \gpgen \stackrel{\psi}{\to} H] \end{align*} is a bijection. \end{lemma*} \begin{proof} \cloze{Suppose $\psi, \psi'$ determine functions $\phi = \phi' : S \to H$. Then \[ \begin{tikzcd}[ampersand replacement=\&] \F(S) \ar[r, "\mathrm{quot}"] \& \gpgen \ar[r, bend left, "\psi"] \ar[r, bend right, "\psi'"] \& H \end{tikzcd} \] are equal by the universal property of free groups. As ``$\mathrm{quot}$'' is onto, $\psi = \psi'$. Conversely, given a $\phi : S \to H$ such that $\phi(r) = r ~\forall r \in R$, consider \[ \varphi : \F(S) \to H \] Now $R \subset \Ker(\varphi)$, so as $\Ker(\phi)$ is normal, $\relgen R \le \Ker(\varphi)$. This $\varphi$ extends to a homomorphism \[ \gpgen = \frac{\F(S)}{\relgen R} \to H \] as required.} \end{proof} \end{flashcard} \begin{example*} If $G$ is a group, the function $\phi = \id : G \to G$ gives a homomorphism $\varphi : \F(G) \to G$, which is onto. Let $R = \Ker(\varphi)$, so $\gpgen = \frac{\F(G)}{\relgen R} \cong G$. \end{example*} \begin{example*} $G = \gpgen$, $H = \gpgen $. Consider \begin{align*} \phi : \{a, b\} &\to H \\ a &\mapsto e \\ b &\mapsto t \\ \phi' : \{t\} &\to G \\ t &\mapsto b \end{align*} Then $\psi(a) = e$, so we get a homomorphism \[ \psi : \gpgen \to \gpgen ,\] by the \nameref{uni_prop_gppres}. We also get \[ \psi' : \gpgen \to \gpgen .\] Note that \begin{align*} \psi' \circ \psi([a]) &= [e] = [a] \\ \psi' \circ \psi([b]) = [b] \end{align*} so as $[a], [b]$ generate, we have $\psi' \circ \psi = \id$. Similarly $\psi \circ \psi' = \id$. So \[ \gpgen \cong \gpgen .\] \end{example*} \begin{example*} Let $G = \gpgen$. Have \[ [a][b]^{-3} = e, \qquad [b][a]^{-2} = e ,\] so \[ [a] = [b]^3, \qquad [b] = [a]^2 ,\] so $[a] = [a]^6$, so $\boxed{e = [a]^5}$. These show that every element is equal to one of $e, [a], [a]^2, [a]^3, [a]^4$. Consider: \begin{align*} \phi : \{a, b\} &\to \ZZ / 5\ZZ \\ a &\mapsto 1 \\ b &\mapsto z \end{align*} Then $\varphi(ab^{-3}) = e = \varphi(ba^{-2})$, so we get a homomorphism $\psi : \gpgen \to \ZZ / 5\ZZ$, which is an isomorphism since $[a] \mapsto 1$. \end{example*} \subsection{Free products with amalgamations} \begin{flashcard}[free-product-defn] \begin{definition*}[Free product] \glssymboldefn{freep}{$G_1 * G_2$}{$G_1 * G_2$} \cloze{Consider group homomorphisms \[ G_1 \stackrel{i_1}{\leftarrow} H \stackrel{i_2}{\to} G_2 \] and suppose $G_i = \gpgen$. The \emph{free product} of $G_1$ and $G_2$ is \[ G_1 * G_2 = \gpgen .\]} \end{definition*} \end{flashcard} \begin{flashcard}[free-product-with-amalg-over-defn] \begin{definition*}[Free product with amalgamation over $H$] \glssymboldefn{freepH}{$G_1 *_H G_2$}{$G_1 *_H G_2$} The functions \[ S_i \to S_1 \amalg S_2 \to \F(S_1 \sqcup S_2) \to G_1 \freep G_2 \] induce homomorphisms \[ G_1 \stackrel{j_1}{\to} G_1 \freep G_2 \stackrel{j_2}{\leftarrow} G_2 \] The \emph{free product with amalgamation over $H$} is the quotient \[ G_1 \freepH H G_2 = G_1 \freep G_2 / \relgen{ j_1 i_1(h) (j_2 i_2(h))^{-1}, h \in H} .\] So the following diagram commutes: \[ \begin{tikzcd}[ampersand replacement=\&] H \ar[r, "i_1"] \ar[d, "i_2"] \& G_1 \ar[d, "j_1"] \\ G_2 \ar[r, "j_2"] \& G_1 \freepH H G_2 \end{tikzcd} \] \end{definition*} \end{flashcard} \begin{flashcard}[uni-prop-of-free-prod-with-amalg-lemma] \begin{lemma*}[Universal property of free products with amalgamation] \label{uni_prop_amalg} For any group $K$, \begin{align*} \left\{ \substack{ \text{group homomorphisms} \\ \phi : G_1 \freepH H G_2 \to K } \right\} &\to \left\{ \substack{ \text{group homomorphisms $\phi_1 : G_1 \to K$,} \\ \text{$\phi_2 : G_2 \to K$, such that} \\ \text{$\phi_1 \circ i_1 = \phi_2 \circ i_2$} } \right\} \\ \phi &\mapsto [G_i \stackrel{j_i}{\to} G_1 \freepH H G_2 \stackrel{\phi}{\to} K] \end{align*} is a bijection. \[ \begin{tikzcd}[ampersand replacement=\&] H \ar[r, "i_1"] \ar[d, "i_2"] \&G_1 \ar[d, "j_1"] \ar[rdd, bend left, "\phi_1"] \\ G_2 \ar[r, "j_2"] \ar[rrd, bend right, "\phi_2", swap] \& G_1 \freepH H G_2 \ar[rd, "\exists! \phi"] \\ \& \& K \end{tikzcd} \] \end{lemma*} \end{flashcard} \begin{proof} Similar to other universal properties. \end{proof} \setcounter{section}{5} \setcounter{subsection}{0} \subsection{The Seifert-Van Kampen Theorem} Let $X$ be a space, $A, B \subset X$ be subspaces, $x_0 \in A \cap B$. We get a commutative diagram \[ \begin{tikzcd} \pio\bs(A \cap B, x_0) \ar[r] \ar[d] &\pio\bs(A, x_0) \ar[d] \\ \pio\bs(B, x_0) \ar[r] &\pio\bs(X, x_0) \end{tikzcd} \] Then the \nameref{uni_prop_amalg} gives us \[ \pio\bs(A, x_0) \freepH{\pio\bs(A \cap B, x_0)} \pio\bs(B, x_0) \to \pio\bs(X, x_0) .\] \begin{flashcard}[seifert-van-kampen-thm] \begin{theorem*}[Seifert-van Kampen] \label{SVK} \cloze{Let $X$ be a space, $A, B \subset X$ be open subsets, which cover $X$ and such that $A \cap B$ is \gls{pathconn}. Then for any $x_0 \in A \cap B$, the induced map \[ \phi : \pio\bs(A, x_0) \freepH{\pio\bs(A \cap B, x_0)} \pio\bs(B, x_0) \to \pio\bs(X, x_0) \] is a group isomorphism.} \end{theorem*} \end{flashcard} \begin{example*} Consider $S^n$ for $n \ge 2$. Let \begin{align*} A &= S^n - \{\text{north pole}\} \cong \RR^n \homoteq \{*\} \\ B &= S^n - \{\text{south pole}\} \cong \RR^n \homoteq \{*\} \end{align*} $A \cap B \cong S^{n - 1} \times (-1, 1)$, \gls{pathconn} for $n \ge 2$, and $\homoteq S^{n - 1}$. So \[ \pio\bs(S^n, \bullet) \cong \{e\} \freepH{\pio\bs(S^{n - 1}, \bullet)} \{e\} = \{e\} .\] So $S^n$ is \gls{simpconn}. \end{example*} \begin{example*} We saw that there is a \glsref[nshtd]{$2$-sheeted} \gls{covmap} $p : S^n \to \RR \PP^n$. For $n \ge 2$, $S^n$ is \gls{simpconn} , so this is a \gls{unicov}. So \[ \pio\bs(\RR\PP^n, \bullet) \stackrel{\mathrm{bij}}{\to} p^{-1}(\bullet) \] has $2$ elements. So $\pio\bs(\RR \PP^n, \bullet) \cong \ZZ / 2\ZZ$. \end{example*} \vspace{-1em} \glssymboldefn{swedge}{$\wedge$}{$\wedge$} Given $(X, x_0), (Y, y_0)$, then \[ X \wedge Y = (X \sqcup Y) / x_0 \sim y_0 .\] \begin{example*} Let $S^1 \subset \CC$ have basepoint $1 \in S^1 \subset \CC$. $S^1 \swedge S^1$ is: \begin{center} \includegraphics[width=0.6\linewidth]{images/239716b069ed4fd7.png} \end{center} Which is covered by \[ (S^1 - \{1\}) \swedge S^1 = U \] \[ S^1 \swedge (S^1 - \{1\}) = V \] \begin{center} \includegraphics[width=0.6\linewidth]{images/335c405a169948d6.png} \end{center} So \nameref{SVK} implies \begin{align*} \pio\bs(S^1 \swedge S^1, x_0) &\cong \gpgen \freepH{\{e\}} \gpgen \\ &= \gpgen \end{align*} \end{example*}