%! TEX root = AlgT.tex % vim: tw=50 % 19/01/2024 11AM % II Algebraic Topology % Oscar Randal-Williams (or257@cam.ac.uk) \subsubsection*{Why study Algebraic Topology?} The main kind of problem we will study is: \textbf{Extension problem:} If $X$ is a space, $A \subset X$ a subspace and $f : A \to Y$ a continuous function, is there a continuous function $F : X \to Y$ such that $F|_A = f$. Specific examples look like: \begin{theorem*} There is no continuous $F : D^n \to S^{n - 1}$ such that \[ S^{n - 1} \stackrel{\text{incl}}{\hookrightarrow} D^n \stackrel{F}{\to} S^{n - 1} \] is the identity. \end{theorem*} \begin{theorem*} There is no group homomorphism $F : \{0\} \to \ZZ$ such that \[ \ZZ \to \{0\} \stackrel{F}{\to} \ZZ \] is the identity. \end{theorem*} \begin{theorem*} $\RR^n \cong \RR^m \iff n = m$. \end{theorem*} \begin{theorem*}[Fundamental theorem of algebra] Any non-constant polynomial over $\CC$ has a root in $\CC$. \end{theorem*} \subsubsection*{Recollections} \glsnoundefn{map}{map}{maps}% We will call a continuous function a \emph{map}. \begin{flashcard}[gluing-lemma] \begin{lemma*}[Gluing lemma] \label{gluing_lemma} \cloze{ Let $f : X \to Y$ be a function between topological spaces, and let $C, K \subset X$ be closed sets such that $X = C \cup K$. Then $f$ is continuous if and only if $f|_C$, $f|_K$ are continuous.} \end{lemma*} \end{flashcard} \begin{proof} Exercise. \end{proof} \begin{flashcard}[lebesgue-number-lemma] \begin{lemma*}[Lebesgue number lemma] \label{lebesgue_number_lemma} \cloze{Let $(X, d)$ be a metric space, and assume it is compact. For any open cover $\mathcal{U} = \{U_\alpha \subset X\}$, there is $\delta > 0$ such that each $B_\delta(x)$ is contained in some $U_\alpha$.} \end{lemma*} \end{flashcard} \subsubsection*{Cell complex} \begin{flashcard}[attaching-n-cell-definition] \begin{definition*}[Attaching an $n$-cell] \glssymboldefn{fcellcup}{cupf}{cupf} \glsverbdefn{attncell}{attaching an $n$ cell}{attaching an $n$ cell} \glsnoundefn{cellstruc}{cell structure}{cell structures} \cloze{For a space $X$ and a \gls{map} $f : S^{n - 1} \to X$, the space obtained by attaching an $n$-cell to $X$ is \[ X \fcellcup D^n = (X \ci D^n) / (z \in S^{n - 1} \subset D^n \tilde f(z) \in X .\] } \fcscrap{ \begin{center} \includegraphics[width=0.6\linewidth]{images/e8fa91cdfb804475.png} \end{center} } \end{definition*} \end{flashcard} \begin{flashcard}[finite-cell-complex-defn] \begin{definition*}[Finite cell complex] \cloze{A (finite) \emph{cell complex} is a space $X$ obtained by the following recipe: \begin{enumerate}[(i)] \item Start with a finite set $X^0$ with the discrete topology. \item If $X^{n - 1}$ has been defined, form $X^n$ by \glsref[attncell]{attaching a finite collection of $n$-cells} along some \glspl{map} $\{f_\alpha : S^{n - 1} \to X^{n - 1}\}$. This $X^n$ is called the $n$-skeleton. \item Stop with $X = X^k$. $k$ is called the dimension of $X$. \end{enumerate} } \end{definition*} \end{flashcard} \setcounter{section}{2} \subsection{Homotopy} \begin{flashcard}[homotopy-defn] \begin{definition*}[Homotopy] \glssymboldefn{homotopic}{$\simeq$}{$\simeq$}% \glsnoundefn{homotopy}{homotopy}{N/A} \glsadjdefn{homotopic}{homotopic}{homotopic} \cloze{Let $f, g : X \to Y$ be \glspl{map}. A \emph{homotopy} from $f$ to $g$ is a map $H : X \times I \to Y$ such that \begin{align*} H(x, 0) &= f(x) \\ H(x, 1) &= g(x) \end{align*} If such an $H$ exists, say \emph{$f$ is homotopic to $g$}, and write $f \homotopic g$. \glssymboldefn{homrel}{$f \simeq g ~rel~ A$}{$f \simeq g ~rel~ A$} If $A \subset X$ is a subspace, say $H$ is a \emph{homotopy relative to $A$} if $H(a, t) = H(a, 0)$ for all $t \in I$, $a \in A$. Write $f \homotopic g \homrel A$.} \end{definition*} \end{flashcard} \begin{flashcard}[homotopic-rel-A-is-eq-rel] \begin{proposition*} Being homotopic $\homrel A$ is an equivalence relation on the set of \glspl{map} from $X$ to $Y$. \end{proposition*} \begin{proof} \phantom{} \begin{enumerate}[(i)] \item $f \homotopic f$ via $H(x, t) = f(x)$. \item If $f \simeq g$ via $H$, let $H'(x, t) = H(x, 1 - t)$. This is a \gls{homotopy} from $g$ to $f$. \item If $f \homotopic g$ via $H$, and $g \homotopic h$ via $H'$ then let \[ H''(x, t) = \begin{cases} H(x, 2t) & 0 \le t \le \half \\ H(x, 2t - 1) & \half \le t \le 1 \end{cases} \] (well-defined as $H(x, 1) = g(x) = H'(x, 0)$). This is continuous on $X \times \left[ 0, \half \right]$ and on $X \times \left[ \half \times 1\right]$, so is continuous on $X \times I$ by \nameref{gluing_lemma}. So $f \homotopic h$. \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[homotopy-equivalence-defn] \begin{definition*}[Homotopy equivalence] \glsnoundefn{homequivce}{homotopy equivalence}{homotopy equivalences}% \glsnoundefn{homequivt}{homotopy equivalent}{homotopy equivalent} \glssymboldefn{homoteq}{$\simeq$}{$\simeq$} \cloze{A \gls{map} $f ; X \to Y$ is a \emph{homotopy equivalence} if there is a $g : Y \to X$ such that $f \circ g \homotopic \id_Y$ and $g \circ f \homotopic \id_X$. Say $X$ is \emph{homotopy equivalent to $Y$}, written $X \homoteq Y$, if a \gls{homequivce} $f : X \to Y$ exists.} \end{definition*} \end{flashcard} \begin{example*} Let $X = S^1$, $Y = \RR^2 - \{0\}$. Let $i : X \to Y$ be the inclusion. Let $r : Y \to X$, continuous, given by $x \mapsto \frac{x}{|x|}$. \begin{center} \includegraphics[width=0.6\linewidth]{images/7f275121a970457b.png} \end{center} Now $r \circ i = \id_X$. On the other hand, $i \circ r : Y \to Y$ is not the identity. But \[ H(x, t) = \frac{x}{t + |x|(1 - t)} \] is a \gls{homotopy} from $\id_Y$ to $i \circ r$. So $\RR^2 - \{b\} \homoteq S^1$. \end{example*} \begin{flashcard}[contractible-defn] \begin{definition*}[Contractible] \glsadjdefn{contractible}{contractible}{contractible}% \cloze{ $X$ is called \emph{contractible} if $X \homotopic \{*\}$ (here, $\{*\}$ denotes a 1-point space).} \end{definition*} \end{flashcard} \begin{lemma*} Let $f_0, f_1 : X \to Y$ and $g_0, g_1 : Y \to Z$ be \gls{homotopic} \glspl{map}. Then $g_0 \circ f_0$ and $g_1 \circ f_1$ are \gls{homotopic}. \end{lemma*} \begin{proof} Lets show $g_0 \circ f_0 \homotopic g_0 \circ f_1 \homotopic g_1 \circ f_1$. To show $g_0 \circ f_0 \homotopic g_0 \circ f_1$: If $H$ is a \gls{homotopy} $f_0$ to $f_1$, then $g_0 \circ H : X \times I \to Y \to Z$ is a \gls{homotopy}. To show $g_0 \circ f_1 \homotopic g_1 \circ f_1$: If $G$ is a \gls{homotopy} $g_0$ to $g_1$, then $G \circ (f_1 \times \id_I) : X \times I \to Y \times I \to Z$ is a \gls{homotopy}. \end{proof}