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Start of

lecture 1
Why study Algebraic Topology?

The main kind of problem we will study is:

Extension problem: If X is a space, A ⊂ X a subspace and f : A→ Y a continuous
function, is there a continuous function F : X → Y such that F |A = f .

Specific examples look like:

Theorem. There is no continuous F : Dn → Sn−1 such that

Sn−1 incl
↪→ Dn F→ Sn−1

is the identity.

Theorem. There is no group homomorphism F : {0} → Z such that

Z→ {0} F→ Z

is the identity.

Theorem. Rn ∼= Rm ⇐⇒ n = m.

Theorem (Fundamental theorem of algebra). Any non-constant polynomial over
C has a root in C.

Recollections

We will call a continuous function a map.

Lemma (Gluing lemma). Let f : X → Y be a function between topological spaces,
and let C,K ⊂ X be closed sets such that X = C ∪K. Then f is continuous if and
only if f |C , f |K are continuous.
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Proof. Exercise.

Lemma (Lebesgue number lemma). Let (X, d) be a metric space, and assume it is
compact. For any open cover U = {Uα ⊂ X}, there is δ > 0 such that each Bδ(x)
is contained in some Uα.

Cell complex

Definition (Attaching an n-cell). For a space X and a map f : Sn−1 → X, the
space obtained by attaching an n-cell to X is

X ∪Dn = (X ⊥⊥ Dn)/(z ∈ Sn−1 ⊂ Dnf̃(z) ∈ X.

Definition (Finite cell complex). A (finite) cell complex is a space X obtained by
the following recipe:

(i) Start with a finite set X0 with the discrete topology.

(ii) If Xn−1 has been defined, form Xn by attaching a finite collection of n-cells
along some maps {fα : Sn−1 → Xn−1}. This Xn is called the n-skeleton.

(iii) Stop with X = Xk. k is called the dimension of X.

2.1 Homotopy
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Definition (Homotopy). Let f, g : X → Y be maps. A homotopy from f to g is a
map H : X × I → Y such that

H(x, 0) = f(x)

H(x, 1) = g(x)

If such an H exists, say f is homotopic to g, and write f ' g.

If A ⊂ X is a subspace, say H is a homotopy relative to A if H(a, t) = H(a, 0) for
all t ∈ I, a ∈ A. Write f ' g relA.

Proposition. Being homotopic relA is an equivalence relation on the set of maps
from X to Y .

Proof.

(i) f ' f via H(x, t) = f(x).

(ii) If f ' g via H, let H ′(x, t) = H(x, 1− t). This is a homotopy from g to f .

(iii) If f ' g via H, and g ' h via H ′ then let

H ′′(x, t) =

{
H(x, 2t) 0 ≤ t ≤ 1

2

H(x, 2t− 1) 1
2 ≤ t ≤ 1

(well-defined as H(x, 1) = g(x) = H ′(x, 0)). This is continuous on X ×
[
0, 12
]

and
on X ×

[
1
2 × 1

]
, so is continuous on X × I by Gluing lemma. So f ' h.

Definition (Homotopy equivalence). A map f ;X → Y is a homotopy equivalence if
there is a g : Y → X such that f ◦ g ' idY and g ◦ f ' idX .

Say X is homotopy equivalent to Y , written X ' Y , if a homotopy equivalence
f : X → Y exists.
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Example. Let X = S1, Y = R2 − {0}. Let i : X → Y be the inclusion. Let
r : Y → X, continuous, given by x 7→ x

|x| .

Now r ◦ i = idX . On the other hand, i ◦ r : Y → Y is not the identity. But

H(x, t) =
x

t+ |x|(1− t)

is a homotopy from idY to i ◦ r. So R2 − {b} ' S1.

Definition (Contractible). X is called contractible if X ' {∗} (here, {∗} denotes
a 1-point space).

Lemma. Let f0, f1 : X → Y and g0, g1 : Y → Z be homotopic maps. Then g0 ◦ f0
and g1 ◦ f1 are homotopic.

Proof. Lets show g0 ◦ f0 ' g0 ◦ f1 ' g1 ◦ f1.

To show g0 ◦ f0 ' g0 ◦ f1: If H is a homotopy f0 to f1, then g0 ◦H : X × I → Y → Z is
a homotopy.

To show g0 ◦ f1 ' g1 ◦ f1: If G is a homotopy g0 to g1, then G ◦ (f1 × idI) : X × I →
Y × I → Z is a homotopy.
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Start of

lecture 2 Proposition. We have

(i) X ' X,

(ii) If X ' Y then Y ' X,

(iii) If X ' Y and Y ' Z, then X ' Z.

Proof.

(i) Take f = g = idX , and constant N/A.

(ii) Given f : X → Y , g : Y → X with f ◦ g ' H idY , g ◦ f ' GidX , this is the same
data as a Y ' X.

(iii) Suppose we have maps f : X → Y , f ′ : Y → Z, g : Y → X, g′ : Z → Y , with
f ◦ g ' idX , f ′ ◦ g′ ' idX , f ′ ◦ g′ ' idZ , g′ ◦ f ′ ' idY . Consider f ′ ◦ f : X → Z,
g ◦ g′ : Z → X. Then

(g ◦ g′) ◦ (f ′ ◦ f) = g ◦ (g′ ◦ f ′) ◦ f ' g ◦ idY ◦ f = g ◦ f ' idX ,

and the other composition is similar.

Definition (Retraction). If i : A→ X is the inclusion of a subspace, then

(i) A retraction is a r : X → A such that r ◦ i = idA.

(ii) A deformation retraction is a retraction such that also i ◦ r ' idX .

Paths

Definition (Path). For a space X and points x0, x1 ∈ X, a path from x0 to x1 is
a map γ : I = [0, 1]→ X such that γ(0) = x0, γ(1) = x1.

If x0 = x1, call γ a loop based at x0.

7
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Notation (Concatenation). If γ is a path from x0 to x1, and γ′ is a path from x1
to x2, then we can form the concatenation γ · γ′ : I → X via

(γ · γ′)(t) =

{
γ(2t) 0 ≤ t ≤ 1

2

γ′(2t+ 1) 1
2 ≤ t ≤ 1

(continuous by the Gluing lemma). This is a path from x0 to x2.

Notation (Inverse path). Define the inverse γ−1 : I → X via

γ−1(t) = γ(1− t).

This is a path from x1 to x0.

Notation (Constant path). Define the constant path cx0 : I → X via cx0(t) = x0.

Definition (Path components). Using the above, we can define an equivalence
relation ∼ on X via

X0 ∼ X1 ⇐⇒ there exists a path γ from x0 to x1

The equivalence classes of ∼ are called path components of X. Say X is path-
connected if there is only 1 equivalence class. Let π0(X) := X/ ∼.

Definition (Locally path-connected). We say that a space X is locally path-
connected if for every x ∈ X, and neighbourhood U 3 x, there exists a smaller
neighbourhood U ⊃ V 3 x such that V is path-connected.

Proposition. For a map f : X → Y , there is a well-defined function π0(f) :
π0(X)→ π0(Y ) given by π0(f)([x]) = [f(x)]. Furthermore:

(i) If f ' g then π0(f) = π0(g).

(ii) If A h→ B
k→ C then π0(k ◦ h) = π0(k) ◦ π0(h).

(iii) π0(idX) = idπ0(X).
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Proof. To see well-defined, let [x] = [x′]. Then there is a path γ from x to x′. Then
f ◦ γ : I

γ→ X
f→ Y is a path for f(x) to f(x′), so [f(x)] = [f(x′)]. Properties (ii)

and (iii) are immediate. For (i), let H : X × I → Y be a homotopy from f to g. Now
H|{x}×I : {x} × I → Y is a path from f(x) to g(x), so

π0(f)([x]) = [f(x)] = [g(x)] = π0(g)([x]).

Corollary. If f : X → Y is a homotopy equivalence, then π0(f) is a bijection.

Proof. If g : Y → X is a homotopy inverse, then

π0(f) ◦ π0(g) = π0(f ◦ g) = π0(idY ) = idπ0(Y )

and π0(g) ◦ π0(f) = idπ0(X), so π0(f) is a bijection.

Example. The space {−1,+1} with the discrete topology is not contractible. This
is because any path in this space is constant, so

π0({−1,+1}) = {−1,+1}

of cardinality 2, so π0({∗}) = {∗} has cardinality 1.

Example. The space [−1, 1] does not retract onto {−1,+1}. Suppose it does.
Then:

Definition (Homotopic paths). Two paths γ, γ′ : I → X both from x0 to x1 are
called homotopic as paths if they are homotopic relative to {0, 1} ⊂ I as in the last
lecture. So γ ' γ′ rel {x0, x1}.
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Lemma. If γ0 ' γ1 as paths from x0 to x1, and γ′0 ' γ′1 as paths from x1 to x2,
then γ0 · γ′0 ' γ1 · γ′1 as paths from x0 to x2.

Proof. Let H be the homotopy from γ0 to γ1 relative to {x0, x1}, and H ′ the homotopy
from γ′0 to γ′1 relative to x1 and x2.

H ′′(s, t) =

{
H(2s, t) 0 ≤ s ≤ 1

2

H ′(2s− 1, t) 1
2 ≤ s ≤ 1

(continuous as usual by the Gluing lemma), is a homotopy from γ0 · γ′0 to γ1 · γ′1 relative
to x0 and x2.

Start of

lecture 3 Proposition. Let γ0 be a path from x0 to x1, γ1 a path from x1 to x2 and γ2 a
path from x2 to x3. Then

(i) γ0 · γ1) · γ2 ' γ0 · (γ1 · γ2) relative to x0 and x3.

(ii) γ0 · cx1 ' γ0 ' cx0 · γ0 relative to x0 and x1.

(iii) γ0 · γ−1
0 ' cx0 relative to x0 and x0, γ−1

0 · γ0 ' cx1 relative to x1 and x1.

Proof. We illustrate some of the cases (other cases are similar) using diagrams and the
corresponding formulae:
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H(s, t) =


γ0

(
4s
t+1

)
0 ≤ s ≤ t+1

4

γ1(4s− 1− t) t+1
4 ≤ s ≤

t+2
4

γ2

(
1− 4(1−s)

2−t

)
t+2
4 ≤ s ≤ 1

H(s, t) =

{
γ0

(
2s
t+1

)
0 ≤ s ≤ t+1

2

x1
t+1
2 ≤ s ≤ 1
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H(s, t) =


γ0(2s) 0 ≤ s ≤ 1−t

2

γ0(1− t) 1−t
2 ≤ s ≤

1+t
2

γ0(2− 2s) 1+t
2 ≤ s ≤ 1

2.2 The fundamental group

Definition (Fundamental group). Let X be a space and x0 ∈ X. Let π1(X,x0) be
the set of homotopy classes of loops in X starting and ending at x0. Then the rule

[γ] · [γ′] = [γ · γ′]

makes (π1(X,x0), ·, [cx0 ]) into a group.

Claim: This definition does actually make π1(X,x0) into a group.

Proof. Lemma from last lecture shows it is well-defined. Previous proposition gives the
group axioms.
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Definition (Based space). A based space is a space X with a chosen point x0 ∈ X
called the base point, (X,x0).

A map of based spaces f : (X,x0)→ (Y, y0) is a map X f→ Y such that f(x0) = y0.
A based homotopy is a homotopy relative to [x0] ⊂ X.

Proposition. To a based map f : (X,x0) → (Y, y0) there is associated a function
π1(f) : π1(X,x0)→ π1(Y, y0) given by π1(f)([γ]) = [f ◦ γ]. It satisfies:

(i) It is a group homomorphism.

(ii) If f is based homotopic to f ′, π1(f) = π1(f
′).

(iii) If (A, a) h→ (B, b)
k→ (C, c) are based maps, then π1(k ◦ h) = π1(k) ◦ π1(h).

(iv) π1(idX) = idπ1(X,x0).

Proof. (i) f ◦cx0 = cy0 so π1(f) preserves identity element. f ◦(γ ·γ′) = (f ◦γ) ·(f ◦γ′),
hence π1(f) is a homomorphism.

(ii) – (iv) Elementary.

Notation. We will write π1(f) =: f∗.
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Proposition. Let u be a path from x0 to x1 in X. It induces a group isomorphism

u# : π1(X,x0)→ π1(X,x1)

[γ] 7→ [u−1 · γ · u]

satisfying

(i) If u ' u′ as paths then u# = u′#.

(ii) (cx0)# = idπ1(X,x0).

(iii) If v is a path from x1 to x2 then (u · v)# = v# · u#.

(iv) If f : X → Y sends x0 to y0 and x1 to y1, then

π1(X,x0) π1(Y, y0)

π1(X,x1) π1(Y, y1)

f

u# (f◦u)#
f∗

“this diagram commutes”, i.e.

(f ◦ u)# ◦ f∗ = f∗ ◦ u#

(v) If u is a path from x0 to x0, then u# is conjugation by [u] ∈ π1(X,x0).

Proof. u# is a group homomorphism via

u#([γ]) · u#([γ′]) = [a−1 · γ · a] · [a−1 · γ′ · u]
= [u−1 · γ · u · u−1 · γ′ · u]
= [u−1 · γ · γ′ · u]
= u#([γ] · [γ′])

It is an isomorphism as (u−1)# is an inverse. For (iv),

((f ◦ u)# ◦ f∗)([γ]) = (f ◦ u)#([f ◦ γ])
= [(f ◦ u)−1 · f ◦ γ · f ◦ u]
= [f ◦ (u−1 · γ · u)]
= f∗([u

−1 · γ · u])
= (f∗ ◦ u#)([γ])
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Lemma. If H : X × I → Y is a homotopy fomr f to g and x0 ∈ X is a base point
base point, then u = H(x0, •) : I → Y is a path from f(x0) to g(x0).

Then
π1(X,x0) π1(Y, f(x0))

π1(Y, g(x0))

f∗

g∗
u#

commutes (i.e. u# ◦ f∗ = g∗).

Proof. I × I γ×id→ X × I H→ Y .

Want g ◦ γ ' u−1 · (f ◦ γ) · u as loops. The top edge in the square is homotopic to
the concatenation of the other three edge. Applying H ◦ (γ × idI) gives the required
homotopy.

Start of

lecture 4 Theorem. If f : X → Y is a homotopy equivalence, x0 ∈ X, then

f∗ : π1(X,x0)→ π1(Y, f(x0))

is an isomorphism.

Proof. Let g;Y → X be a homotopy inverse, f ◦g ' H idY , g◦f ' H′ idX . Let u′ : I → X
be

u′(t) = H ′(x0, 1− t),

a path from x0 to g ◦ f(x0). The previous lemma gives an isomorphism

u′# = (g ◦ f)∗ · π1(X,x0)
f∗↔ π1(Y, f(x0))

g∗
� π1(X1, gf(x0))

15
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We want to show↔ is an isomorphism, and to do this it is enough to show � is injective.
To show g∗ is injective, consider u(t) = H(g(x0), 1− t) and get an isomorphism

u# = (f ◦ g)∗ · π1(Y, f(x0))
g∗
↪→ π1(X, gf(x0))

f∗
� π1(Y, fgf(x0))

So g∗ is injective, so the f∗ above is g−1
∗ ◦ u′#, an isomorphism.

Definition (Simply connected). A space X is simply-connected if it is path-
connected and π1(X,x0) = {e} for some (hence all) x0 ∈ X.

Example. A contractible space is simply-connected. X ' {∗}, so π0(X) and
π1(X,x0) are trivial.

Lemma. X is simply-connected if and only if ∀x0, x1 ∈ X, there is a unique homo-
topy class of paths form x0 to x1.

Proof. Let X be simply-connected, and x0, x1 ∈ X. As X is path-connected, there exists
a path from x0 to x1. If γ, γ′ are two such paths, then γ−1 · γ is a loop based at x1, so
[γ−1γ′] ∈ π1(X,x1) = {e}, so γ−1 ·γ′ ' cx1 relative to x1. So γ′ ' γ ·γ−1 ·γ′ ' γ ·cx1 ' γ
relative to end points.

Conversely, if X has the stated property then:

(i) It is path-connected.

(ii) Any loop based at x0 is homotopic to cx0 as loops.

Hence π1(X,x0) = {e}.

Covering Spaces

Definition (Covering map). A covering map p : X̃ → X is a continuous map such
that for any x ∈ X there exists an open neighbourhood U 3 x such that

p−1(U) =
∐
α∈I

Vα

and p|Vα → U is a homeomorphism.
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Example. Let S1 ⊂ C be the unit complex numbers, and

p : R→ S1

t 7→ e2πit = (cos(2πt), sin(2πt))

Let Uy>0 = {x+ iy ∈ S1 | y > 0}. Then

p−1(Uy>0) =
∐
j∈Z

(
j, j +

1

2

)
Now

p|(j,j+ 1
2

) :
(
j, j +

1

2

)
→ Uy>0

j +
arccos(x)

2π
←[ x+ iy

Similarly for Uy<0, Ux<0, Ux>0. So p is a covering map.

Example. For some n > 0, let

p : S1 → S1

z 7→ zn

Let y ∈ S1 and consider p−1(y) = {n-th roots of y}. Choosing a root ξ and letting
η = e

2πi
n , this can be written as

p−1(y) = {ξ, ηξ, η2ξ, . . . , ηn−1ξ}

Then S1 − {y} is open and

p−1(S1 − {y}) = S1 − {ξ, ηξ, η2ξ, . . . , ηn−1ξ}

V0 =
{
z ∈ S1 | 0 < arg

(
z
ξ

)
< 2π

n

}
and Vi = ηi · V0. Each x 6= y ∈ S1 has a unique

n-th root in each Vi, so p|Vi : Vi → S1−{y} is a bijection: in fact a homeomorphism.
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Example. S2 ⊂ R3 be the unit vectors. Let

RP2 = S2/x ∼ −x.

Have

p : S2 → RP2

x 7→ [x]

Let V = {(x, y, z) ∈ S2 | z 6= 0}, and U = p(V ). Then p−1(U) = V is open, so U is
open in RP2. Now p−1(U) = V = Vz>0 q Vz<0.

Claim: p|Vz>0 : Vz>0 → U and p|Vz>0 are homeomorphisms.

Proof. To construct an inverse g : U → Vz>0, use definition of quotient topology.
Consider

t : V → Vz>0

(x, y, z) 7→ (x, y, z) if z ≥ 0

7→ (x, y,−z) if z < 0

a continuous map. Note t descends to t : U → Vz>0 as a map of sets, so a continuous
map by definition of quotient toplogy. It is inverse to p|Vz>0 .

Do same with x-coordinate and y-coordinate to show that this is a covering map of
RP2.

Start of

lecture 5 Definition (Lift). Let p : X̃ → X be a covering map, f : Y → X be a map. A lift
of f along p is a F̃ : Y → X̃ such that p ◦ f̃ = f .

X̃

Y X

p
f̃

f

Definition (Evenly-covered). Given p : X̃ → X a covering map, we say that U ⊂ X
is evenly-covered by {Vα : α ∈ I} if p−1(U) =

∐
α∈I Vα and p|Vα : Vα

∼=→ Uα.

18
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Lemma (Uniqueness of Lifts). If f̃0 and f̃1 are lifts of f : Y → X along a covering
map p : X̃ → X then

S := {y ∈ Y | f̃0(y) = f̃1(y)}

is both open and closed. In particular, if Y is connected, then S = ∅ or S = Y .

Proof. First show S is open. Let s ∈ S and let U 3 f(s) be an open neighbourhood
which is evenly-covered (p−1(U) =

⊔
Vα). Now f̃0(s) and f̃1(s) agree so live in the same

Vα. Then on N = f̃−1
0 (Vα) ∩ f̃−1

1 (Vα) we have

p|Vα ◦ f̃0|N = f |N = p|Vα ◦ f̃1|N ,

but p|Vα is a homeomorphism, so f̃0|N = f̃1|N . So s ∈ N ⊂ S, so S is open.

Now we show S is closed. Let y ∈ S and f̃0(y) 6= f̃1(y). Let U 3 f(y) be an open
neighbourhood that is evenly-covered. Then f̃0(y) ∈ Vβ and f̃1(y) ∈ Vγ with β 6= γ (as
f̃0(y) 6= f̃1(y)). So f̃−1

0 (Vβ) ∩ f̃−1
1 (Vγ) is an open set, containing y ∈ S. By definition of

closure, it intersects S. But then Vβ and Vγ must intersect, contradiction.

Lemma (Homotopy lifting lemma). Let p : X̃ → X be a covering map, H : Y ×I →
X from f0 to f1, and f̃0 be a lift of f0. Then there exists a unique homotopy
H̃ : Y × I → X̃ such that:

(i) H̃(•, 0) = f̃0(•).

(ii) p ◦ H̃ = H.

Proof. Let {Uα}α∈I be an open cover ofX by sets which are evenly-covered, i.e. p−1(Uα) =∐
β∈Iα Vβ and p|Vβ : Vβ

∼=→ Uα. Now {H−1(Uα)} is an open cover of Y × I, and for each
y0 ∈ Y it gives an open cover of {y0} × I. By the Lebesgue number lemma, there is a
N = N(y0) such that each path

H|{y0}×
[

i
N
, i+1

N

] : {y0} ×
[
i

N
,
i+ 1

N

]
→ X

has image inside some Uα.
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In fact, as {y0}×I is compact, there is an openWy0 3 y0 such that eachH
(
Wy0 ×

[
i
N ,

i+1
N

])
lies in some Uα. We can construct a lift H̃|Wy0×I as follows:

(i) H|Wy0×
[
0, 1

N

] → Uα ⊂ X and have f̃0|Wy0
: Wy0 → X̃ with image in some Vβ lying

in Uα.

Define H̃|Wy0×
[
0, 1

N

] H|→ Uα
p|−1

Vβ→∼= Vβ ⊂ X̃.

(ii) Proceed in the same way, lifting H|Wy0×
[

1
N
, 2
N

] starting at H̃|Wy0×
{

1
N

} etc.

At the end of this process, we get a H̃|Wy0×I lifting H|Wy0×I and extending f̃0 at time
0. We can do this for each y0 ∈ Y , so it is enough to check that on

(Wy0 × I) ∩ (Wy1 × I) = (Wy0 ∩Wy1)× I,

the two lifts constructed agree.

For a y2 ∈ Wy0 ∩Wy1 , the two choices give lifts of H|{y2}×I which agree with f̃0(y2) at
time 0. By the Uniqueness of Lifts, these lifts must agree on the whole of {y2} × i. So
they agree.

Corollary (Path lifting). If p : X̃ → X is a covering map, then γ : I → X is a
path from x0 to x1, and x̃0 ∈ X̃ such that p(x̃0) = x0. Then there is a unique path
γ̃ : I → X̃ such that γ̃(0) = x̃0 and p ◦ γ̃ = γ.
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Corollary. Let p : X̃ → X be a covering map, γ, γ′ : I → X be paths from x0 to
x1, and γ̃, γ̃′ : I → X̃ be their lifts starting at x̃0 ∈ p−1(x0). If γ ' γ′ as paths, then
γ̃ ' γ̃′ as paths. In particular, γ̃(1) = γ̃′(1).

Proof. Let H : I × I → X be a homotopy from γ to γ′ relative to endpoints.

Homotopy lifting lemma gives a H̃ : I × I → X̃, which is a homotopy of paths.

Corollary. Let p : X̃ → X be a covering map and X be path-connected. Then the
sets p−1(x) are all in bijection with each other.

Proof. Let γ : I → X be a path from x0 to x1. Define

γ∗ : p
−1(x0)→ p−1(x0)

y0 7→ γ̃(1)

for γ̃ the lift of γ starting at y0. Similarly (γ−1)∗ : p
−1(x1)→ p−1(x0). Then

(γ−1)∗γ∗(y0) = end point of the lift of γ−1 · γ which starts at y0
= end point of cy0
= y0

Start of

lecture 6 Lemma. Let p : X̃ → X be a covering map, x0 ∈ X, x̃0 ∈ p−1(x0) ⊂ X̃. Then

p∗ : π1(X̃, x̃0)→ π1(X,x0)

is an injective homomorphism.
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Proof. Let γ : I → X̃ be a loop based at x̃0, and suppose p∗[γ] = [p ◦ γ] = [cx0 ] so
p ◦ γ ' Hcx0 as loops. Now lift H to a homotopy H̃ starting at γ (by Path lifting): then
H̃ is a homotopy of paths from γ to a lift of cx0 , which must be cx̃0 (by uniqueness). So
[γ] = [cx̃0 ] = e ∈ π1(X̃, x̃0).

In the proof of the previous Corollary we constructed for a path γ : I → X from x0 to
x1 a bijection γ∗ : p−1(x0) → p−1(x1). It only depended on the homotopy class of the
path γ. This defines a (right) action of π1(X,x0) on p−1(x0), via

y0 · [γ] := γ̃(1)

for γ̃ the lift of γ starting at y0.

Lemma. Let p : X̃ → X be a covering map, X path-connected and x0 ∈ X. Then:

(i) π1(X,x0) acts transitively on p−1(x0) if and only if X̃ is path-connected.

(ii) The stabiliser of y0 ∈ p−1(x0) is Im(π1(X̃, y0)
p∗→ π1(X,x0)) ≤ π1(X,x0).

(iii) If X̃ is path-connected then there is a bijection

π1(X,x0)

p∗π1(X̃, y0)
→ p−1(x0)

induced by acting on y0 ∈ p−1(x0).

Proof.

(i) Let X̃ be path-connected, and y0, z0 ∈ p−1(x0). Let γ̃ : I → X̃ be a path from y0
to z0, so γ = p ◦ γ̃ : I → X is a loop based at x0. The lift of γ starting at y0 is γ̃,
and ends at z0, so y0 · [γ] = z0, so transitive.
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Conversely, suppose the action is transitive, let y0, z0 ∈ X̃. Choose a path γ from
p(y0) to p(z0), lift it starting at y0, then it ends at z1, lying in the same fibre as z0.

Suppose y0 and z0 are not in the same path-component. Then z1 and z0 are also
not. But taking x′0 = p(z0), π1(X,x′0) acts transitively on p−1(x′0) 3 z0, z1. So
there exiss a loop γ in X whose lift starting at z0 ends at z1, i.e. z0 and z1 are in
the same path-component.

(ii) Suppose y0 · [γ] = y0, then the lift γ̃ of γ starting at y0 also ends at y0, so is a loop.
Then [γ] = p∗[γ̃], so

Stabπ1(X,x0)(p
−1(x0)) ≤ Im(p∗).

If [γ] = p∗[γ
′] then γ′ is the lift of γ starting at y0, but also ends at y0 so y0 ·[γ] = y0.

(iii) Orbit-stabiliser.

Definition (n-sheeted). If p : X̃ → X is a covering map we say that it is n-sheeted
if p−1(x0) all have the same cardinality n ∈ N ∪ {∞}.

Definition (Universal cover). If p : X̃ → X is a covering map we say that it is a
universal cover if X̃ is simply-connected.
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Corollary. If p : X̃ → X is a universal cover, then each x̃0 ∈ p−1(x0) determines a
bijection

l : π1(X,x0)
∼→ p−1(x0)

[γ] 7→ γ̃(1)

for γ̃ the lift of γ starting at x̃0.

This induces a group-law on p−1(x0) via

y0 ∗ z0 := l(l−1(y0) · l−1(z0))

Spelling out, this is given by:

• Choose a path γ̃ : I → X̃ from x̃0 to z0,

• Let γ be the lift of p ◦ γ̃ starting at y0,

• y1 ∗ z1 = γ(1)

3.1 Fundamental group of S1

Theorem. Let u : I → S1 be u(s) = e2πis, which is based at 1 ∈ S1 ⊂ C. Then
there is an isomorphism π1(S

1, 1) ∼= (Z,+, 0) sending u to 1 ∈ Z.
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Proof. We know p : R → S1, t 7→ e2πit is a covering map. R is contractible so simply-
connected. So this is a universal cover. Hence

l : π1(S
1, 1)

∼→ p−1(1) = Z ⊂ R

is a bijection. To compute l−1(m) we can take ũm : I → R, t 7→ mt, so um = p ◦ ũm is a
loop in S1. Take x̃0 = 0 ∈ Z.

So

n ∗m = the end point of the lift of um starting at n
= (t 7→ n+mt)|t=1

n+m

So ∗ = +.

Theorem. The disc D2 does not retract to its boundary S1.

Proof. Suppose r : D2 → S1 is a retraction, i : S1 ↪→ D2, so r ◦ i = idS1 :

id : π1(S
1, 1)︸ ︷︷ ︸

∼=Z

i∗→ π1(D
2, 1)︸ ︷︷ ︸

∼={e}

r∗→ π1(S
1, 1)︸ ︷︷ ︸

∼=Z

This is clearly not possible, so r does not exist.

25



Corollary (Brouwer fixed point theorem). Any map f : D2 → D2 has a fixed point.

Proof. Suppose not. Define r : D2 → S1 as shown:

This would be a retraction onto the boundary, contradictin the previous theorem.

Start of

lecture 7 Theorem (Fundamental Theorem of Algebra). Any non-constant polynomial over
C has a root in C.

Proof. Let p(z) = zn + a1z
n−1 + · · ·+ an a monic polynomial over C. Choose

r > max(|a1|+ |a2|+ · · ·+ |an|, 1)

On the circle |z| = r, we have

|zn| = |zn−1|r
> |zn−1|(|a1|+ · · ·+ |an|)
> |a1zn−1 + · · ·+ an|

Therefore for any t ∈ [0, 1], the polynomial

pt(z) = zn + t(a1z
n−1 + · · ·+ an)
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does not have a root on the circle |z| = r. Consider the homotopy of loops in S1 ⊂ C:

F (s, t) =
pt(r · e2πis)/pt(r)
|pt(r · e2πis)/pt(r)|

.

The divisions is allowed since we know that at all times t, the polynomial does not have
a root on the circle |z| = r. At t = 0, it is the loop s 7→ e2πisn. This is n ∈ Z ∼= π1(S

1, 1).
At t = 1, it is the loop

s
fr→ p(r · e2πis)/p(r)
|p(r · e2πis)/p(r)|

.

This also represents n ∈ Z ∼= π1(S
1, 1). Suppose p has no roots. Then fn is a continuous

loop for all r ∈ [0,∞) and varying r gives a homotopy from fr to f0. Note that the loop
f0 is:

s 7→ f0(s) =
p(r)/p(r)

|p(r)/p(r)|
= 1

This corresponds to the constant loop, i.e. 0 ∈ Z ∼= π1(S
1, 1). Hence we must have

n = 0 ∈ Z, so p was constant.

3.2 Construction of universal covers

Observation 1: Let p : X̃ → X a universal cover, x ∈ X. Let U 3 x a neighbourhood
which is evenly-covered (i.e. p−1(U) =

∐
Vα). Let γ : I → U be a loop in U based at

x0. This lifts to a
γ̃ : I Vα ⊂ X̃

U

γ
p|−1

Vα

This is homotopic to a constant loop in X̃, as X̃ is simply-connected. Applying p gives
γ ' cx0 in X, i.e. “every x ∈ X has a neighbourhood U 3 x such that the map
π1(U, x)

(inc)∗→ π1(X,x) is trivial”. We call this property “semi-locally simply connected”.

Definition (Semi-locally simply-connected). We say a space X is semi-locally
simply-connected if every x ∈ X has a neighbourhood U 3 x such that

π1(U, x)
(inc)∗→ π1(X,x)

is trivial.
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Example. The “Hawaiian earring” is not semi-locally simply-connected:

The circles all share a common tangency point, and we have a circle of radius 1
n for

each n.

Observation 2: Suppose p : X̃ → X is a universal cover and x0 = p(x̃0) is a base point.
Any y ∈ X̃ has a unique path α from x̃0 to y (up to homotopy). Then

y = the end point of the lift of p ◦ α starting at x̃0.,

i.e. there is a bijection

X̃ →
{

homotopy classes of
paths in X starting

at x0

}
y 7→ p ◦ α

γ̃(1)←[ [γ]

Theorem (Existence of universal covers). Let X be path-connected, locally path-
connected, and semi-locally simply-connected. Then it has a universal cover.

Proof (non-examinable). As a set let

X̃ :=

{
homotopy classes of
paths in X starting

at x0

}
,
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and

p : X̃ → X

[γ] 7→ γ(1)

Want:

(i) Make a topology on X̃.

(ii) Show p is continuous.

(iii) Show p is a covering map.

(iv) Show X̃ is simply-connected.

Consider

U = {U ⊂ X | U open, path-connected and π1(U, x)→ π1(X,x) is trivial ∀x ∈ U}

Claim: This is a basis for the topology on X.

Proof: Let V 3 x be an open neighbourhood. Then:

(i) X semi-locally simply-connected =⇒ ∃U ′ 3 x such that π1(U ′, x) → π1(X,x) is
trivial.

(ii) As X is locally path-connected, can fine V ∩ U ′ ⊃ U 3 x which is path-connected.

(iii) The map
π1(U, x) π1(X,x)

π1(U
′, x)

triv

is trivial.

(iv) Let y ∈ U be another point, and u : I → U be a path from x to y. Then the
following diagram commutes

π1(U, y) π1(X, y)

π1(U, x) π1(X,x)

'u#

trivial

'u#

which shows the top map is trivial.

This completes the proof of the claim.
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For [α] ∈ X̃ and a U ∈ U such that α(1) ∈ U , define

([α], U) = {[β] ∈ X̃ | [β] = [α · α′] for some path α′ in U}.

Claim: These sets form a basis for a topology on X̃.

Proof: Let [β] ∈ ([α0], U0) ∩ (α1, U1). As in the figure, there are α′
0, α

′
1 with [α · α′

0] =
[β] = [α1 · α′

1]. Let β(1) ∈W ⊂ U0 ∩ U1 with W ∈ U . Want to show

([β],W ) ⊂ ([α0], U0) ∩ ([α1], U1)

If [γ] ∈ ([β],W ), then there is a path δ in W with

[γ] = [β · δ] = [α0 · α′
0 · δ︸ ︷︷ ︸
∈U0

] ∈ ([α0], U0).

Similarly
[γ] = [β · δ] = [α1 · α′

1 · δ︸ ︷︷ ︸
∈U1

] ∈ ([α1], U1).

This finishes the proof of the claim.

Start of

lecture 8
We now check that p is continuous. It is enough to check that p−1(U) is open for U ∈ U .
If [α] ∈ p−1(U), then [α] ∈ ([α], U) ⊂ p−1(U), so p−1(U) is open.

To see that p is a covering map, we first show that each

p|([α],U) : ([α], U)→ U
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is a homeomorphism. As U is path-connected, for any y ∈ U there is a path γ in U from
α(1) to y, so p([α · γ]) = y, so the map is surjective. If [β], [β′] ∈ ([α], U) maps to the
same thing under p|([α],U), then β and β′ end at the same point. So there exist paths γ,
γ′ in U such that [β] = [α · γ], [β′] = [α · γ′].

So
[β′] = [α · γ · γ−1 · γ′] = [α · γ] = [β]

where the first equality comes from the fact that γ−1 · γ′ is a loop in U , so homotopic to
a constant loop in X. So p|([α],U) is injective. So p|([α],U) is a bijection, and continuous.
It is also open as

p(([β], V )) = V,

so p|([α],U) is a homeomorphism. We now claim that p−1(U) is partitioned into ([α], U)s.
When checking that p is continuous, we saw that they cover, so need to show that if
they intersect then they are equal. So let [γ] ∈ ([α], U)∩ ([β], U), i.e. there are paths α′,
β′ in U such that [γ] = [α · α′] = [β · β′]. Let [δ] ∈ ([α], U) So

[δ] = [α · α′′] = [α · α′ · (α′)−1 · α′′] = [β · β′ · (α′)−1 · α′′︸ ︷︷ ︸
⊂U

]

so [δ] ∈ ([β], U)
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i.e. ([α], U) ⊆ ([β], U), similarly for the opposite containment.

Finally, we need to show that X̃ is simply-connected. Note: if γ : I → X is a path, then
its lift γ̃ : I → X̃ startng at [cx0 ] ends at [γ], because

s 7→ [t 7→ γ(st)] : I → X̃

is the lift. So if a loop γ in X lifts to a loop in X̃ based at [cx0 ], so

[γ] = [cx0 ] =⇒ p∗π1(X̃, [cx0 ]) = {e} ⊆ π1(X,x0).

But p∗ is injective, so
π1(X̃, [cx0 ]) = {e}

3.3 The Galois Correspondence

If p : X̃ → X is a covering map, X̃ path-connected, x0 ∈ X and x̃0 ∈ p−1(x0), then

p∗ : π1(X̃, x̃0)→ π1(X,x0)

is injective, giving a subgroup of π1(X,x0).

If x̃′0 ∈ p−1(x0) is another basepoint, let γ be a path in X̃ from x̃0 to x̃′0. Then p ◦ γ is
a loop based at x0, and we have

[p ◦ γ]−1 · p∗π1(X̃, x̃0) · [p ◦ γ] = p∗π1(X̃, x̃
′
0) ≤ π1(X,x0)

So fixing a path-connected based space (X,x0) we get{
based path-connected covering maps

p : (X̃, x̃0) → (X,x0)

} p 7→Im(p∗)

−−−−−−−−−→ {subgroups of π1(X,x0)}{
path-connected covering map

p : X̃ → X

} p 7→Im(p∗)

−−−−−−−−−→
{

conjugacy classes of
subgroups of π1(X, x0)

}
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Proposition (Surjectivity of Galois correspondence). Let X be path-connected,
locally path-connected, and semi-locally simply-connected. Then for any H ≤
π1(X,x0) there is a p : (X̃, x̃0)→ (X,x0) with p∗π1(X̃, x̃0) = H.

Proof. Let X q→ X be the universal cover we have constructed in Existence of universal
covers. Define ∼H on X by [γ] ∼H [γ′] ⇐⇒ γ(1) = γ′(1) and [γ · (γ′)−1] ∈ H ≤
π1(X,x0). So:

(i) [γ] ∼H [γ].

(ii) If [γ] ∼H [γ′] then [γ · (γ′)−1] ∈ H, so [γ′ · (γ′)−1] ∈ H. So [γ′] ∼H [γ].

(iii) If [γ] ∼H [γ′], [γ′] ∼H [γ′′], then γ(1) = γ′(1) = γ′′(1), and

[γ · (γ′′)−1] = [γ · (γ′)−1 · γ′ · (γ′′)−1] = [γ · (γ′)−1]︸ ︷︷ ︸
∈H

[γ′ · (γ′′)−1]︸ ︷︷ ︸
∈H

∈ H.

So [γ] ∼H [γ′′].

So ∼H is an equivalence relation. Define XH = X/ ∼H , the quotient space, and pH :
XH → X to be the induced map. If [γ] ∈ ([α], U), [γ′] ∈ ([β], U) satisfy [γ] ∼H [γ′] then
([α], U) and [β], U) are identified by ∼H , as [γ · η] ∼H [γ′ · η] for any path η in U . So pH
is a covering map.

It remains to show that (pH)∗π1(XH , [[cx0 ]]) = H ≤ π1(X,x0). If [γ] ∈ H then the lift
of γ to X starting at [cx0 ] ends at [γ], so the lift to XH ends at [[γ]] = [[cx0 ]], so is a
loop, i.e.

H ⊆ (pH)∗π1(XH , [[cx0 ]).

If [γ] ∈ (pH)∗π1(XH , [[cx0 ]]) then the lift γ of γ to X starting at [cx0 ] ends at [γ], so
[γ] ∼H [cx0 ], as it becomes a loop in XH by assumption. So [γ] ∈ H.

Start of

lecture 9 Proposition (Based uniqueness). Let (X,x0) satisfy the conditions for Existence
of universal covers. If p1 : (X̃1, x̃1) → (X,x0), p2 : (X̃2, x̃2) → (X,x0) are path-
connected covering spaces, then the following are equivalent:

• there exists homeomorphism h : (X̃1, x̃1)→ (X̃2, x̃2) such that p2 ◦ h = p1

• (p1)∗π1(X̃1, x̃1) = (p2)∗π1(X̃1, x̃1)

Proof. If h exists, then
Im((p1)∗) = Im((p2)∗ ◦ h∗)
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as h∗ is an isomorphism.

For the other direction, let H ≤ π1(X,x0) be the common image. Will show that X̃1

and X̃2 are homeomorphic to XH (over X). Consider

r : X → X̃1

[γ] 7→ γ̃(1)

end point of the lift γ̃ of γ to X̃1, starting at x̃1. Notice

r([γ]) = r([γ′]) ⇐⇒ γ̃ and γ̃′ end at the same point of X̃1

⇐⇒ [γ′ · γ−1] ∈ (p1)∗π1(X̃1, x̃1) = H

⇐⇒ [γ] ∼H [γ′]

So r descends to a map
q : (XH , [[cx0 ]])→ (X̃1, x̃1),

a bijection. It is also an open map, as XH and X̃1 are both locally homeomorphic to X.
So q is a homeomorphism.

Corollary (Unbased uniqueness). Let X satisfy the conditions from Existence of
universal covers. If p1 : X̃1 → X and p2 : X̃2 → X are path-connected covering
spaces, then the following are equivalent:

• there exists homeomorphism h : X̃1 → X̃2 such that p2 ◦ h = p1

• (p1)∗π1(X̃1, x̃1) and (p2)∗π1(X̃2, x̃2) are conjugate in π1(X,x0) for any x̃1 ∈
p−1
1 (x0), x̃2 ∈ p−1

2 (x0).

Proof. If h exists, choose x1 ∈ p−1
1 (x0) and x̃2 = h(x̃1). Based uniqueness applies to see

that the groups are determined.

Conversely, suppose [γ] ∈ π1(X,x0) is such that

[γ]−1 · (p1)∗π1(X̃1, x̃1) · [γ] = (p2)∗π1(X̃2, x̃2).

Lif γ to X̃1 starting x̃1, and say it ends at x̃′1. Then

LHS = (p1)∗π1(X̃1, x̃
′
1).

Now by Based uniqueness, we can find a homeomorphism h : (X̃1, x̃
′
1)→ (X̃2, x̃2), which

can be viewed as an unbased homeomorphism.
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So we now have bijections:{
based path-connected

covering maps of (X,x0)

}
/based homeomorphism

over X ↔
{

subgroups of
π1(X,x0)

}
{

path-connected
covering maps of X

}
/homeomorphism

over X ↔
{

conjugacy classes of
subgroups of π1(X,x0)

}

4.1 Free groups and presentations

Definition (Alphabet and words). Let S = {sα}α∈I be a set, called the alphabet,
S−1 = {s−1

α }α∈I (suppose S ∩ S−1 = ∅.

A word in the alphabet S is a (possibly empty) finite sequence (x1, x2, . . . , xn) of
elements in S ∪ S−1. A word is reduced if it does not contain (sα, s

−1
α ) or (s−1

α , sα)
as a subword. An elementary reduction consists of removing such a subword from a
word.

Definition (Free group). The free group on the alphabet S, denoted F (S), is the set
of reduced (possibly empty) words in this alphabet. The group operation is given
by concatenation, and doing elementary reductions until it is reduced.

Note that the group operation here is not obviously well-defined. We will not prove here
that it is well-defined. See the lecturer’s notes for a proof.

Clearly we have that the empty string is the identity, and for any word (x1, . . . , xn), it
has inverse (x−1

n , . . . , x−1
1 ).

There is a function i : S → F (S), s 7→ (s).

Lemma (Universal property of free groups). For any group H, the function{
homomorphisms
φ:F (S)→H

}
−◦i→ {functionsφ : S → H}

is a bijection.

Proof. Given φ : S → H, want a φ : F (S) → H such that φ((s)) = φ(s). Let, on a
not-necessarily-reduced word (sε1α1

, . . . , sεnαn
),

φ((sε1α1
, . . . , sεnαn

)) = φ(sα1)
ε1 · · ·φ(sεnαn

) ∈ H.

If the word contained (sα, s
−1
α ), then the result contains φ(sα)φ(sα)−1 = e ∈ H. So

φ is well-defined. As the group operation on F (S) is by concatenation, we see φ is a
homomorphism.
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Definition (Group with relations). Let S be a set and R ⊆ F (S). Then

〈S | R〉 = F (S)/〈〈R〉〉

with
〈〈R〉〉 = {(rε11 )g1 · · · (rεnn )gn | ri ∈ R, εi ∈ {±1}, g ∈ F (S)} E F (S),

where hg denotes g−1hg.

Call this (S and R) a presentation of the group 〈S | R〉. If S and R are finite, call
it a finite presentation.

Start of

lecture 10 Lemma (Universal property of group presentations). For any group H, the function{
group homomorphisms

ψ:〈S|R〉→H

}
→
{

functions φ : S → H
such that φ(r) = e ∀r ∈ R

}
ψ 7→ [S

inc→ F (S)
quot→ 〈S | R〉 ψ→ H]

is a bijection.

Proof. Suppose ψ,ψ′ determine functions φ = φ′ : S → H. Then

F (S) 〈S | R〉 H
quot

ψ

ψ′

are equal by the universal property of free groups. As “quot” is onto, ψ = ψ′.

Conversely, given a φ : S → H such that φ(r) = r ∀r ∈ R, consider

ϕ : F (S)→ H

Now R ⊂ ker(ϕ), so as ker(φ) is normal, 〈〈R〉〉 ≤ ker(ϕ). This ϕ extends to a homomor-
phism

〈S | R〉 = F (S)

〈〈R〉〉
→ H

as required.

Example. If G is a group, the function φ = id : G → G gives a homomorphism
ϕ : F (G)→ G, which is onto. Let R = ker(ϕ), so 〈G | R〉 = F (G)

〈〈R〉〉
∼= G.
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Example. G = 〈a, b | a〉, H = 〈t |〉. Consider

φ : {a, b} → H

a 7→ e

b 7→ t

φ′ : {t} → G

t 7→ b

Then ψ(a) = e, so we get a homomorphism

ψ : 〈a, b | a〉 → 〈t |〉,

by the Universal property of group presentations. We also get

ψ′ : 〈t |〉 → 〈a, b | a〉.

Note that

ψ′ ◦ ψ([a]) = [e] = [a]

ψ′ ◦ ψ([b]) = [b]

so as [a], [b] generate, we have ψ′ ◦ ψ = id. Similarly ψ ◦ ψ′ = id. So

〈a, b | a〉 ∼= 〈t |〉.

Example. Let G = 〈a, b | ab−3, ba−2〉. Have

[a][b]−3 = e, [b][a]−2 = e,

so
[a] = [b]3, [b] = [a]2,

so [a] = [a]6, so e = [a]5 . These show that every element is equal to one of
e, [a], [a]2, [a]3, [a]4. Consider:

φ : {a, b} → Z/5Z
a 7→ 1

b 7→ z

Then ϕ(ab−3) = e = ϕ(ba−2), so we get a homomorphism ψ : 〈a, b | ab−3, ba−2〉 →
Z/5Z, which is an isomorphism since [a] 7→ 1.
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4.2 Free products with amalgamations

Definition (Free product). Consider group homomorphisms

G1
i1← H

i2→ G2

and suppose Gi = 〈Si | Ri〉. The free product of G1 and G2 is

G1 ∗G2 = 〈S1 q S2 | R1 tR2〉.

Definition (Free product with amalgamation over H). The functions

Si → S1 q S2 → F (S1 t S2)→ G1 ∗G2

induce homomorphisms
G1

j1→ G1 ∗G2
j2← G2

The free product with amalgamation over H is the quotient

G1 ∗
H
G2 = G1 ∗G2/〈〈 j1i1(h)(j2i2(h))−1, h ∈ H〉〉.

So the following diagram commutes:

H G1

G2 G1 ∗
H
G2

i1

i2 j1

j2
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Lemma (Universal property of free products with amalgamation). For any group
K, {group homomorphisms

φ:G1 ∗
H
G2→K

}
→
{

group homomorphisms φ1 : G1 → K,
φ2 : G2 → K, such that

φ1 ◦ i1 = φ2 ◦ i2

}
φ 7→ [Gi

ji→ G1 ∗
H
G2

φ→ K]

is a bijection.
H G1

G2 G1 ∗
H
G2

K

i1

i2 j1
φ1

j2

φ2

∃!φ

Proof. Similar to other universal properties.

5.1 The Seifert-Van Kampen Theorem

Let X be a space, A,B ⊂ X be subspaces, x0 ∈ A ∩B. We get a commutative diagram

π1(A ∩B, x0) π1(A, x0)

π1(B, x0) π1(X,x0)

Then the Universal property of free products with amalgamation gives us

π1(A, x0) ∗
π1(A∩B,x0)

π1(B, x0)→ π1(X,x0).

Theorem (Seifert-van Kampen). Let X be a space, A,B ⊂ X be open subsets,
which cover X and such that A ∩ B is path-connected. Then for any x0 ∈ A ∩ B,
the induced map

φ : π1(A, x0) ∗
π1(A∩B,x0)

π1(B, x0)→ π1(X,x0)

is a group isomorphism.
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Example. Consider Sn for n ≥ 2. Let

A = Sn − {north pole} ∼= Rn ' {∗}
B = Sn − {south pole} ∼= Rn ' {∗}

A ∩B ∼= Sn−1 × (−1, 1), path-connected for n ≥ 2, and ' Sn−1. So

π1(S
n, •) ∼= {e} ∗

π1(Sn−1,•)
{e} = {e}.

So Sn is simply-connected.

Example. We saw that there is a 2-sheeted covering map p : Sn → RPn. For n ≥ 2,
Sn is simply-connected , so this is a universal cover. So

π1(RPn, •)
bij→ p−1(•)

has 2 elements. So π1(RPn, •) ∼= Z/2Z.

Given (X,x0), (Y, y0), then

X ∧ Y = (X t Y )/x0 ∼ y0.
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Example. Let S1 ⊂ C have basepoint 1 ∈ S1 ⊂ C. S1 ∧ S1 is:

Which is covered by
(S1 − {1}) ∧ S1 = U

S1 ∧ (S1 − {1}) = V

So Seifert-van Kampen implies

π1(S
1 ∧ S1, x0) ∼= 〈a |〉 ∗

{e}
〈b |〉

= 〈a, b |〉

Start of

lecture 11
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Example. The function

{a, b} → Z/3Z
a 7→ 1

b 7→ 1

gives a homomorphism ϕ : 〈a, b |〉 = π1(S
1 ∧ S2, x0)→ Z/3Z, surjective. So

K = ker(ϕ) ≤ π1(S1 ∧ S1, x0)

is a subgroup of index 3. This corresponds to a covering space. What is it? It is a
p : X̃ → X with

p−1(x0) ∼=
π1(S

1 ∧ S1, x0)

K
∼= Z/3Z.
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Example. Consider

{a, b} → Z/3Z
a 7→ 1

b 7→ 0

again giving a ϕ : π1(S
1 ∧ S1, x0) = 〈a, b |〉 � Z/3Z, with kernel K. What is the

covering space corresponding to K?

Example. The universal cover of S1 ∧ S1?
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Proof of Seifert-van Kampen (non-examinable). Without loss of generality can assume
A,B are path-connected.

(1) φ surjective: Let γ : I → X be a gloop. Then {γ−1(A), γ−1(B)} is an open cover
of I, so by Lebesgue number lemma there is a n� 0 such that each

[
i
n ,

i+1
n

]
is sent

into A or B (or both). By concatenating intervls which lie in A, or in B, can write
γ = γ1 · γ2 · · · γk with each γi being endpoints in A∧B. Chooce paths ui from γi(1)
to x0 in A ∧B.

Then γ ' (γ1 · ui) · (u−1
i · γ2u2) · (u

−1
2 · γ3 · u3) · · · (u

−1
k−1 · γk). Each thing in a pair of

brackets is a loop based at x0, lying in A or in B. So [γ] ∈ Im(φ) as required.

(2) φ is injective: The group

π1(A, x0) ∗
π1(A∧B,x0)

π1(B, x0)

by the following description. It is generated by

(i) For γ : I → A a loop in A, [γ]A.

(ii) For γ : I → B a loop in B, [γ]B.

With relations:

(i) If γ ' γ′ in A, then [γ]A = [γ′]A, and similarly for B.

(ii) If γ : I → A ∩B then [γ]A = [γ]B.

(iii) [γ]A · [γ′]A = [γ · γ′]A, and similarly for B.

Suppose
φ([γ1]Ai1

· [γ2]Ai2
· · · [γn]Ain

) = [cx0 ]
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so γ1 · · · γk ' Hcx) in X, H : I × I → X. Can subdivide I × I into squares of size 1
N

with n | N such that each square is sent into A or B (or both).

Choose paths iij from H
(
i
N ,

j
N

)
to x0 such that:

• If it is a vertex of a box labelled A, the path is in A.

• If it is a vertex of a box labelled B, the path is in B.

G has the property that it decomposes into rectangles with vertices sent to x0, and
each rectangle in A or in B. This shows that [γ1]A1 · · · [γn]An can be transformed
using the 3 kinds of relations described.

5.2 Attaching a cell

Let f : (Sn−1, ∗)→ (X,x0), then

Y = X ∪f Dn =
X tDn

f(x) ∼ x ∈ ∂Dn = Sn−1

Then [x0] ∈ Y is a basepoint, and the inclusion (X,x0) ↪→ (Y, [x0]) is a based map.

Start of

45



lecture 12 Theorem.

(i) If n ≥ 3, then inc∗ : π1(X,x0)→ π1(Y, [x0]) is an isomorphism.

(ii) If n = 2, then inc∗ : π1(X,x0) → π1(Y, [x0]) is the quotient by the normal
subgroup generated by [f ] ∈ π1(X,x0).

Proof. Let U =
∫
(Dn), V = X ∪f (Dn − {0}). These give an open cover of Y . Choose

a path u in U ∩ V from y0 to some y1 ∈
∫
(Dn) = U .

If n ≥ 3 then:

(i) U ' {∗}.

(ii) U ∩ V = Sn−1 × (0, 1) is simply-connected.

So Seifert-van Kampen gives us:

π1(U, y1) ∗
π1(U ∩ V, y1)︸ ︷︷ ︸

=π1(V,y1)

π1(V, y1)
∼→ π1(Y, y1).

So also, by change of basepoint isomorphism, we get

π1(V, y0)
∼→ π1(Y, y0).

But V strongly deformation retracts to X, so:

π1(X, y0)
∼→ π1(V, y0)

∼→ π1(Y, y0).

If n = 2 then:

(i) U ' {∗}.
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(ii) U ∩ V ∼= S1 × (0, 1).

Now Seifert-van Kampen gives us:

π1(U, y1)︸ ︷︷ ︸
{e}

∗
π1(U ∩ V, y1)︸ ︷︷ ︸

=Z31

π1(V, y1)
∼→ π1(Y, y1).

The 1 ∈ Z corresponds to e in π1(U, y1), and corresponds to u−1
#([f ]) in π1(V, y1). So

π1(V, y1)

〈〈u−1
#[f ]〉〉

∼→ π1(Y, y0)

Then change of basepoint and using the fact that V strongly deformation retracts to X,
we get

π1(X, y0)

〈〈 [f ]〉〉
∼→ π1(V, y0)

〈〈 [f ]〉〉
∼→ π1(Y, y0).
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Example. The torus T :

has a cell structure with:

1. A 0-cell x0,

2. 1-cells a, b,

3. A 2-cell.

The 1-skeleton is:

So
π1(T

1, x0) = 〈a, b |〉,

and so
π1(T, x0) = 〈a, b | aba−1b−1〉 ∼= Z× Z.
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Corollary. For G = 〈S | R〉 with S,R finite, there is a 2-dimensional based cell
complex (X,x0) with π1(X,x0) ∼= G.

Proof. Let Y be the wedge of |S|-many circles. Sending s ∈ S to the s-th circle xs gives
an isomorphism

〈S |〉 ∼→ π1(Y, y0).

Each r ∈ R is an element of 〈S |〉, so gives a [γr] ∈ π1(Y, y0). Attaching 2-cells to Y
along {γr}r∈R gives an (X,x0) with

π1(X,x0) =
〈S |〉
〈〈 r ∈ R〉〉

= 〈S | R〉.

5.3 A refinement of Seifert-van Kampen

Definition (Neighbourhood deformation retract). A subset A ⊂ X is called a
neighbourhood deformation retract (NDR) if there is an open neighbourhood A ⊂
U ⊂ X and U strongly deformation retracts to A.

Theorem (Refinement of Seifert-van Kampen). Let X be a space, A,B ⊂ X closed
subsets which cover X and such that AcapB is path-connected and is a neighbour-
hood deformation retract in both A and B. Then

π1(A, x0) ∗
π1(A∩B,x0)

π1(B, x0)
∼→ π1(X,x0).

Proof. Let A ∩ B ⊂ U ⊂ A, A ∩ B ⊂ V ⊂ B, U, V open, which strongly deformation
retract to A ∩B. Observe

(A ∪ V )c = B − V (B ∪ U)c = A− U

49



are closed, so A ∪ V , B ∪ U is an open cover of X.

The strong deformation retracts of U and V to A ∩ B glue to give a deformation of
(A ∪ V ) ∩ (B ∪ U) = U ∩ V to A ∩ B. Then we get deformations of A ∪ V to A and
B ∪ U to B. Now we use Seifert-van Kampen for the open cover and we get:

π1(B) π1(A ∩B), π1(A)

π1(B ∪ U) π1((A ∪ V ) ∩ (B ∪ U)) π1(A ∪ V )

∼ ∼ ∼

5.4 Surfaces
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Example.

LHS strongly deformation retracts to

So
π1(X,x0) = 〈a, b |〉,

with [r] = aba−1b−1.

Applying Seifert-van Kampen several times gives:

π1(Fg, x0) ∼= 〈a1, b1, a2, b2, . . . , ag, bg |〉

The boundary is r1r2 · · · rg, so attaching a 2-cell along it to get Σg,

π1(Σg, x0) = 〈a1b2, . . . , agbg | a1b1a−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · · agbga
−1
g b−1

g 〉
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Example. RP2:

Has 1-skeleton

2-cell is attached along aa. So

π1(RP2, ∗) ∼= 〈a | a2〉 = Z/2Z.
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Example.

Y ' S1, so
π1(Y, y0) = 〈a |〉,

and [r] = a2 ∈ π1(Y, y0). Seifert-van Kampen again:

π1(En, y0) ∼= 〈a1, . . . , an |〉

The boundary is r1r2 · · · rn, so attaching a 2-cell along it to get a closed surface Sn,
we get

π1(Sn, y0) = 〈a1, . . . , an | a21a22 · · · a2n〉.

Start of

lecture 13
6.1 Simplicial complexes

Definition (Affinely independent). A finite set of points a0, a1, . . . , ar ∈ Rm is
affinely independent if{∑n

i=1 tiai = 0

and
∑n

i=1 ti = 0
⇐⇒ (t1, . . . , tn) = 0.
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Lemma. a0, . . . , an ∈ Rm is affinely independent if and only if a1 − a0, a2 −
a0, . . . , an − a0 is linearly independent.

Proof. Let a0, . . . , an be affinely independent, and suppose

n∑
i=1

si(ai − a0) = 0.

Then (
−

n∑
i=1

si

)
a0 + s1a1 + · · ·+ snan = 0

and (
−

n∑
i=1

si

)
+ s1 + · · ·+ sn = 0

hence (s1, . . . , sn) = 0. So a1 − a0, . . . , an − a0 are linearly independent.

Similarly for the converse.

Definition (n-simplex). If a0, . . . , an ∈ Rm are affinely independent, then they
define an n-simplex

σ = 〈a0, . . . , an〉 =

{
n∑
i=0

tiai

∣∣∣∣∣
n∑
i=0

ti = 1 and ti ≥ 0

}
⊆ Rm

given by the convex hull of the points a0, . . . , an. These are called the vertices of σ,
and we say that they span σ.

If x ∈ 〈a0, . . . , an〉, then x can be written uniquely as x =
∑n

i=0 tiai for real numbers
t0, . . . , tn summing to 1. Call the ti’s the barycentric coordinates of x.

Definition (Face). A face of a n-simplex σ = 〈a0, . . . , an〉 is a simplex τ spanned
by a subset of {a0, . . . , an}. Write τ ≤ σ. Write τ < σ if τ is a proper face.

Definition (Boundary). The boundary of a simplex σ, written ∂σ is the union of
all its proper faces.
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Definition (Interior). The interior of σ, written σ̊, is σ − ∂σ.

Lemma. Let σ be a p-simplex in Rm and τ be a p-simplex in Rn. Then σ and τ
are homeomorphic.

Proof. Let σ = 〈a0, . . . , ap〉, τ = 〈b0, . . . , bp〉. Define

h : σ → τ
p∑
i=0

tiai 7→
p∑
i=0

tibi

This is well-defined and a bijection, by uniqueness of barycentric coordinates. As the
ai − a0 are linearly independent, h extends to an affine map ĥ : Rn → Rm, so h is
continuous. So is its inverse.

Definition (Geometric simplicial complex). A geometric (or Euclidean) simplicial
complex in Rm is a finite set K of simplexes in Rm such that:

(i) If σ ∈ K and τ ≤ σ, then τ ∈ K.

(ii) If σ, τ ∈ K, then σ ∩ τ = ∅ or σ ∩ τ is a face of σ and of τ .

Example.

Definition (Dimension of a simplicial complex). The dimension of a simplicial
complex K is the largest p such that K contains a p-simplex.
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Definition (Polyhedron of a simplicial complex). The polyhedron of K is the space

|K| =
⋃
σ∈K

σ ⊆ Rm.

Remark. |K| is compact and Hausdorff.

Definition (d-skeleton of a simplicial complex). The d-skeleton K(d) of K is the
sub-simplicial complex containing all simplexes of K of dimension ≤ d.

Definition (Triangulation). A triangulation of a space X is a geometric simplicial
complex K and a homeomorphism h : |K|

∼=→ X.

Example. The standard n-simplex is ∆n = 〈e1, . . . , en+1〉 ⊆ Rn+1. It, along with
its faces, defines a simplicial complex.

Example. The simplicial (n − 1)-sphere is the simplicial complex given by the
proper faces of ∆n. Its polyhedron is ∂∆n ⊆ Rn+1.
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Example. In Rn+1 consider the 2n+! simplexes given by 〈±e1,±e2, . . . ,±en+1〉 and
let K be given by these and all their faces.

Define

h : Rn+ 1 \ {0} ⊇ |K| → Sn

x 7→ x

|x|

this is continuous, and a bijection. As |K| and Sn are compact Hausdorff, it is a
homeomorphism.

Definition (Simplicial map). Write VK for the set of vertices (i.e. the 0-simplces)
of K.

A simplicial map f from K to L is a frunction f : VK → VL such that if σ =
〈a0, . . . , an〉 ∈ K then {f(a0), . . . , f(an)} spans a simplex of L, called f(σ). Write
f : K → L.
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Example. The map

f : ∆1 → ∆2

(1, 0) 7→ (1, 0, 0)

(0, 1) 7→ (0, 1, 0)

Example. The map

g : ∆2 → ∆1

(1, 0, 0) 7→ (1, 0)

(0, 1, 0) 7→ (1, 0)

(0, 0, 1) 7→ (0, 1)
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lecture 14 Lemma. A simplicial map f : K → L of simplicial complexes induces a continuous
map |f | : |K| → |L|, and |f ◦ g| = |f | ◦ |g|.

Proof. For a σ ∈ K, σ = 〈a0, a1, . . . , ap〉, define

fσ : σ → |L|
p∑
i=0

tiai 7→
p∑
i=0

tif(ai)

which is linear in the ti, hence continuous. If τ ≤ σ, then fτ = fσ|τ , so fσ|σ∩σ′ = fσ′ |σ∩σ′ ,
so the fσ glue to a continuous |f | : |K| =

⋃
σ∈K σ → |L|. The formula for |f | shows that

it behaves as claimed under composition.

So we can recover f from |f | and the discrete sets VK ⊂ |K|, VL ⊂ |L|, i.e. a simplicial
map is the same as a continuous map |K| → |L| which sends vertices to vertices, and is
affine on each simplex.

Definition (Star and link). For a x ∈ |K|,

(i) The (open) star of x is the union of the interiors of the simplexes which contain
x

StK(x) =
⋃
σ∈K

σ̊ ⊂ Rm

The complement of StK(x) is the union of simplexes which do not contain x,
a polyhedron, so closed. Thus StK(x) is open.

(ii) The link of x, LkK(x) is the union of those simplexes which do not contain x,
but are faces of a simplex which does not contain x.
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Example.

6.2 Simplicial approximation

Definition (Simplicial approximation). Let f : |K| → |L| be a continuous map. A
simplicial approximation to f is a function g : VK → VL such that

f(StK(v)) ⊂ St L(g(v))

for all v ∈ VK .

Lemma. If g is a simplicial approximation to a continuous map f , then g is a
simplicial map, and f is is homotopic to |g|. Furthermore, this homotopy may be
taken relative to

{x ∈ |K| | f(x) = |g|(x)}.

Proof. To show that g defines a simplicial map, for σ ∈ K we must show that the images
under g of the vertices of σ span a simplex of L.

For x ∈ σ̊, we have x ∈
⋂
v∈Vσ StK(v), so

f(x) =
⋂
v∈Vσ

f(StK(v)) ⊂
⋂
v∈Vσ

St L(g(v)).

If τ is the unique simplex of L with f(x) ∈ τ̊ , then each g(v) is a vertex of σ. So the
{g(v)} span a face of τ , which is a simplex of L.

Want to show f ' |g|. If |L| ⊆ Rm, then let

H : |K| × I → |L| ⊂ Rm

(x, t) 7→ t · f(x) + (1− t)|g|(x)
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This is continuous, so need to show it indeed lies in |L|. Let x ∈ σ̊ ⊂ |K| and suppose
f(x) ∈ τ̊ ⊂ |L|. If σ = 〈a0, . . . , ap〉 then by the above each g(ai) is a vertex of τ . Then

|g|(x) =
p∑
i=0

tig(ai) ∈ τ

as it is a convex linear combination of vertices of τ . As f(x) ∈ τ , each of tf(x) + (1 −
t)|g|(x) lies in τ too.

Definition (Barycentre). The barycentre of a simplex σ = 〈a0, . . . , ap〉 is the point

σ̂ =
1

p+ 1
(a0 + a1 + · · ·+ ap).

Definition (Barycentre subdivision). The barycentre subdivision of a simplicial
complex K is

K ′ = {〈σ̂0, . . . , σ̂p〉 | σi ∈ K, and σ0 < σ1 < · · · < σp}

We will use the notation K(r) = (K(r−1))′ (where K(0) = K).

Note. It is not obvious that this is a simplicial complex.

Proposition. K ′ is a simplicial complex, and |K ′| = |K|.
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Proof. If σ0 < σ1 < · · · < σp then the σ̂i are affinely independent: Suppose
∑p

i=0 tiσ̂i = 0
and

∑p
i=0 ti = 1. Let j = max{i | ti 6= 0}. Then

σ̂j = −
p∑
i=0

ti
tj
σ̂i ∈ σj−1,

so σ̂j lies in a proper face of σj , which is not possible. Thus all ti must be 0.

K ′ is a simplicial complex: Let 〈σ̂0, . . . , σ̂p〉 ∈ K ′. A face is given by omitting some σ̂j ’s.
But omitting some σj ’s from σ0 < σ1 < · · · < σp still gives a strictly increasing chain
of simplexes of K. Let σ′ = 〈σ̂0, . . . , σ̂p〉, τ ′ = 〈τ̂0, . . . , τ̂1〉 and consider σ′ ∩ τ ′. This is
inside σp ∩ τp, which is a simplex δ of K. So there are simplexes

σ′′ = 〈σ̂0 ∩ δ, . . . , σ̂p ∩ δ〉, τ ′′ = 〈τ̂0 ∩ δ, . . . , τ̂p ∩ δ〉

of K. Now σ′ ∩ τ ′ = σ′′ ∩ τ ′′ This reduces to the case that σ′′ and τ ′′ are contained in
a simplex δ of K. Now we split into cases. If σ′′ and τ ′′ contain δ̂, then let σ, τ be the
faces of σ′′, τ ′′ opposite to δ̂. Then σ′′∩τ ′′ is spanned by δ̂ and σ′′∩τ ′′. But σ′′∩τ ′′ ⊂ ∂δ,
which has a smaller dimension than σ, so can suppose it is a simplex of ∂δ by induction
on dimension. If σ′′ or τ ′′ does not contain δ̂, then σ′′ ∩ τ ′′ ⊂ ∂δ, so again finish by
induction on dimension.

|K ′| = |K|: Note 〈σ̂0, σ̂1, . . . , σ̂p〉 ≤ σp ≤ |K|, so |K ′| ⊆ |K|. Conversely, if x ∈ σ =
〈a0, . . . , ap〉 ⊂ |H| is written as

x =

p∑
i=0

tiai,

can reorder the ai so that t0 ≥ t1 ≥ t2 ≥ · · · ≥ tp, so

x = (t0 − 1)︸ ︷︷ ︸
≥0

a0 + 2 (t1 − t2)︸ ︷︷ ︸
≥0

(
a0 + a1

2

)
+ 3 (t2 − t3)︸ ︷︷ ︸

≥0

(
a0 + a1 + a2

3

)
+ · · ·

= (t0 − t1)〈̂a0〉+ 2(t1 − t1) ̂〈a0, a1〉+ 3(t2 − t3) ̂〈a0, a1, a2〉+ · · ·

∈ 〈〈̂a0〉, ̂〈a0, a1〉, . . . , ̂〈a0, . . . , ap〉〉
⊆ |K ′|

Start of

lecture 15 The vertices of K ′ are in bijection with the simplexes of K. Choose a function K → VK
which assigns to σ some vertex of σ. So

g : VK′ ∼= K → VK

σ̂(↔ σ) 7→ vσ
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If 〈σ̂0, . . . , σ̂p〉 is a simplex of K ′ then σ0 ≤ σ1 ≤ · · · ≤ σp and g(σ̂i) is some vertex of σ,
so a vertex of σp. The {g(σ̂i)} thus spans a face of σ, so is a simplex of K if and only if
g is a simplicial map.

Also, if σ̂ ∈ τ ′ = 〈τ̂0, . . . , τ̂p〉 ∈ K ′, then σ̂ ∈ τp, so σ is a face of τp. So vσ ∈ σ ⊆ τp. So
τ̊ ′ ⊂ τ̊p ⊆ StK(vσ). Thus

StK′(σ̂) ⊂ StK(vσ = g(σ))

so g is a simplicial approximation to id : |K ′| → |K|. So |g| ' id.

Definition (Mesh). The mesh of K is

µ(K) = max{|v0 − v1| | 〈v0, v1〉 ∈ K}.

Lemma. SupposeK has dimension≤ n, then µ(K(r)) ≤
(

n
n+1

)r
µ(K), so µ(K(r))→

0 as r →∞.

Proof. Enough to treat the case r = 1.

Let 〈τ̂ , σ̂〉 ∈ K ′, so τ ≤ σ in K.

|τ̂ − σ̂| ≤ max{|v − σ̂| | v is a vertex of σ}.
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Let σ = 〈v0, v1, . . . , vm〉 with m ≤ n, and reorder so that the maximum is attained at
v = v0.

|v0 − σ̂| =

∣∣∣∣∣v0 − 1

m+ 1

m∑
i=0

vi

∣∣∣∣∣
=

∣∣∣∣∣m+ 1

m+ 1
v0 −

1

m+ 1

m∑
i=0

vi

∣∣∣∣∣
=

1

m+ 1

∣∣∣∣∣
m∑
i=0

v0 − vi

∣∣∣∣∣
≤ 1

m+ 1

m∑
i=1

|v0 − vi|

≤ m

m+ 1
µ(K)

≤ n

n+ 1
µ(K)

Theorem (Simplicial Approximation Theorem). Let f : |K| → |L| be a continuous
map. Then there is a r � 0 and a simplicial map g : K(r) → L such that g is a
simplicial approximation to f .

If f is simplicial on some |N | ⊂ |K|, can take g|VN = f |VN .

Proof. The St L(ω), ω ∈ VL is an open cover of |L|, so

{f−1 StK(ω)}ω∈VL

is an open cover of |K|; pick δ > 0 using Lebesgue number lemma for this cover. Choose
r � 0 such that µ(K(r)) < δ. For each v ∈ VK(r) have

StK(r)(v) ⊆ Bµ(K(r))(v) ⊆ f
−1(St L(ω))

for some w ∈ VL. Define g : VK(r) → VL by g(v) = w. Then

f(StK(r)(v)) ⊆ St L(g(v)).

So g is a simplicial approximation to f . So g is a simplicial map.

The final step is by choosing w carefully when v ∈ VN .

Corollary. If n < m, then any map f : Sn → Sm is homotopic to a constant map.
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Proof. Spheres are polyhedra: Sn = |K|, Sn = |L|, then f is homotopic to |g|, for some
g : K(r) → L. This can not hit any m-simplex of L, as K has dim ≤ n. So |g| must miss
every point on the interior of some m-simplex: it is not onto. Thus it factors through
(Sn − {∗}) ' ∗, so is homotopic to a constant map.

Start of

lecture 16
7.1 Simplicial homology

Definition. Let K be a simplicial complex. We define On(K) to be the free abelian
group (Z-module) with basis

{[v0, v1, . . . , vn] | the vi are vertices of K which span a simplex}.

The vi are considered to be ordered, and could span a simplex of dim < n, i.e. could
have repeats.

Definition.Define Tn(K) ≤ On(K) to be the subgroup spanned by:

(i) [v0, v1, . . . , vn] containing a repeat.

(ii) [v0, v1, . . . , vn]− sgn(σ)[vσ(0), . . . , vσ(n)] for a permutation σ of {0, 1, . . .}.

Define Cn(K) = On(K)/Tn(K), the quotient group.

Lemma. There is a non-canonical isomorphism Cn(K) ∼= Z{n-simplices of K}.

Proof. Choose a total order ≺ of VK . Then each n-simplex σ of K determines a canonical
ordered simplex [σ] ∈ On(K) by ordering its vertices such that a0 ≺ a1 ≺ · · · ≺ an. This
gives:

φ : Z{n-simplices of K} → On(K)

σ 7→ [σ]

ans so gives

φ′ : Z{n-simplices of K} → Cn(K)
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For each [a0, a1, . . . , an] ∈ On(K), there is a unique permutation τ of {0, 1, . . . , n} such
that aτ(0) ≺ aτ(1) ≺ · · · ≺ aτ(n). Let

sgn[a0, . . . , an] := sgn(τ) ∈ {±1}.

Define

ρ : On(K)→ Z{n-simplices of K}

[a0, . . . , an] 7→

{
(sgn[a0, . . . , an])〈a0, . . . , an〉 no repeats
0 repeats

For this to descend to Cn(K), need Tn(K) to be in ker(ρ). Certainly [a0, . . . , an]’s with
repeats are in ker(ρ).

ρ([v0, . . . , vn]− sgn(σ)[vσ(0), . . . , vσ(n)]) = sgn[v0, . . . , vn]〈v0, . . . , vn〉
− sgn(σ) sgn[vσ(0), . . . , vσ(n)]〈vσ(0), . . . , vσ(n)〉

= 0

as required. So we get ρ′ : Cn(K) → Z{n-simplices of K}. Not ρ′ ◦ φ′(σ) = σ. If
[a0, . . . , an] has no repeats, then

φ′ ◦ ρ′([a0, . . . , an]) = φ′(sgn[a0, . . . , an]〈a0, . . . , an〉)
= sgn[a), . . . , an][aτ(0), . . . , aτ(n)]

= [a0, . . . , an] mod Tn(K)

So φ′ and ρ′ are inverse.

Definition (dn).Define a homomorphism

dn : On(K)→ On−1(K)

[v0, . . . , vn] 7→
n∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vn]

where the v̂i means “skipel this element”.

Lemma. dn sends Tn(K) into Tn−1(K).

Proof. Note

dn([v0, . . . , vn]− sgn(σ)[vσ(0), . . . , vσ(n)])

=

n∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vn]−
n∑
i=0

(−1)i sgn(σ)[vσ(0), . . . , v̂σ(i), . . . , vn]
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Need to show that this is trivial in On−1(K)/Tn−1(K). Suppose first σ = (j, j + 1), a
transposition, so sgn(σ) = −1. Then

n∑
i=0

(−1)i sgn(σ)[vσ(0), . . . , v̂σ(i), . . . , vσ(n)]

=

j−1∑
i=0

(−1)i+1[v0, . . . , v̂i, . . . , vj+1, vj , vj+2, . . . , vn]

+ (−1)j+1[v0, . . . , vj−1, vj , vj+2, . . . , vn]

+ (−1)j+2[v0, . . . , vj−1, vj+1, . . . , vn]

+

n∑
i=j+2

(−1)i+1[v0, . . . , vj−1, vj+1, vj , . . . , vj+2, . . . , v̂i, . . . , vn]

In the first sum

[v0, . . . , v̂i, . . . , vj−1, vj+1, vj+2, . . . , vn] ≡ −[v0, . . . , v̂i, . . . , vn] mod Tn−1(K).

In the second sum,

[v0, . . . , vj−1, vj+1, vj , vj+2, . . . , v̂i, . . . , vn] ≡ −[v0, . . . , v̂i, . . . , vn] mod Tn−1(K).

Then

RHS ≡
n∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vn] mod Tn−1(K)

as required. Any σ is a product of (j, j + 10, so we get the same for any σ.

Now suppose [v0, . . . , vn] with vj = vj+1 (if it has repeats, we can assume this without
loss of generality by using permutations since we showed this doesn’t affect values
mod Tn−1(K)). Then:

dn[v0, . . . , vn] =

j−1∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vj , vj+1, . . . , vn]

+ (−1)j [v0, . . . , vj−1, vj+1, . . . , vn]

+ (−1)j+1[v0, . . . , vj , vj+2, . . . , vn]

+

n∑
i=j+2

(−1)j [v0, . . . , vjvj+1, . . . , v̂i, . . . , vn]

∈ Tn−1(K)

This is because the sums are both in Tn−1(K) since each term has a repeat, and the
middle alone terms cancel each other since vj = vj+1.

So dn induces a homomorphism dn : Cn(K)→ Cn−1(K) given by the same formula.
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Lemma. The composition dn−1 ◦ dn : Cn(K)→ Cn−1(K) is zero.

Proof. At the level of On(K), compute

dn−1 ◦ dn[v0, . . . , vn]

= dn−1

(
n∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vn]

)

=

n∑
i=0

(−1)i
[
i−1∑
k=0

(−1)k[v0, . . . , v̂i, . . . , vn] +
n−1∑
k=i

(−1)k[v0, . . . , v̂i, . . . , vn]

]

Coefficient of [v0, . . . , v̂a, . . . , v̂b, . . . , vn] is (−1)a(−1)b + (−1)a(−1)b−1 = 0. As the
[v0, . . . , vn] generate, we get dn−1 ◦ dn = 0.

Start of

lecture 17 Definition (n-th simplicial homology group). The n-th simplicial homology group
of K is

Hn(K) :=
ker(dn : Cn(K)→ Cn−1(K))

Im(dn−1 : Cn+1(K)→ Cn(K))
.
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Example. Let K be the union of all the proper faces of the standard 2-simplex
∆2 ⊂ R3, i.e.

K = {〈e1〉, 〈e2〉, 〈e3〉, 〈e1, e2〉, 〈e2, e3〉, 〈e3, e1〉}.

Order the vertices as e1 ≺ e2 ≺ e3. Then

C0(K) = Z{[e1], [e2], [e3]}
C1(K) = Z{[e1, e2], [e2, e3], [e1, e3]}
Cn(K) = 0 (n ≥ 2)

and
d1 : C1(K)→ C0(K), d1[ei, ej ] = [ej ]− [ei]−1 0 −1

1 −1 0
0 1 1


Note Im(d1) = 〈[ei]− [ej ]〉Z, so

H0(K) =
Z{[e1], [e2], [e3]}
〈[ei]− [ej ]〉

∼= Z.

For H1, note

ker(d1) = Z{[e1, e2]−[e1, e3]︸ ︷︷ ︸
=[e3,e1]

+[e2, e3]} ∼= Z

Im(d2) = 0

So H1(K) ∼= Z.
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Example. Now let L be the standard 2-simplex ∆2 ⊂ R3, i.e.

L = {〈e1〉, 〈e2〉, 〈e3〉, 〈e1, e2〉, 〈e1, e3〉, 〈e2, e3〉, 〈e1, e2, e3〉}.

Then

C0(L) = Z{[e1], [e2], [e3]}
C1(L) = Z{[e1, e2], [e1, e3], [e2, e3]}
C2(L) = Z{[e1, e2, e3]}

So
0
d4→ 0

d3→ C2(L)︸ ︷︷ ︸
=Z

d2→ C1(L)︸ ︷︷ ︸
=Z3

d1→ C0(L)︸ ︷︷ ︸
=Z3

→ 0.

Note
d2[e1, e2, e3] = [e2, e3]− [e1, e3] + [e1, e2] 6= 0,

so d2 is injective, so H2(L) = 0. But also

H1(L) =
ker(d1)

Im(d2)
=

Z{[e1, e2]− [e1, e3] + [e2, e3]}
Z{[e1, e2]− [e1, e3] + [e2, e3]}

= 0

H0(L) = Z

(where H0(L) = Z because the relevant groups C1, C0 haven’t changed since the
previous example).

7.2 Some homological algebra
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Definition (Chain complex).A chain complex is a sequence C0, C1, C2, . . . of abelian
groups and homomorphisms dn : Cn → Cn−1 such that dn−1◦dn = 0 for all n. Write
this data as C•, and call the dn’s the differentials of C•. Then define

Hn(C•) :=
ker(dn : Cn → Cn−1)

Im(dn+1 : Cn+1 → Cn)
.

Notation.Write

Zn(C•) := ker(dn : Cn → Cn−1) “the n-cycles of C•”
Bn(C•) := Im(dn+1 : Cn+1 → Cn) “the n-boundaries of C•”

Definition (Chain map). A chain map f• : C• → D• is a sequence of homomor-
phisms fn : Cn → Dn, such that fn ◦ dn+1 = dn+1 ◦ fn+1, i.e. the diagram

Cn+1 Dn+1

Cn Dn

fn+1

dn+1 dn+1

fn

commutes.

Definition (Chain homotopy). A chain homotopy between f•, g• : C• → D• is a
sequence of homomorphisms hn : Cn → Dn+1 such that

gn − fn = dn+1 ◦ fn + hn−1 ◦ dn.

The above definition is hard to motivate at the moment, but one should just accept it
as it is for now.

Lemma. A chain map f• : C• → D• induces a homomorphism

f∗ : Hn(C•)→ Hn(D•)

[x] 7→ [fn(x)]

Furthermore, if g• is chain homotopic to f•, then g∗ = f∗.

Proof. Need to show that f∗ is well-defined.
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(i) Let [x] ∈ Hn(C•), i.e. x ∈ Cn and dn(x) = 0. Then

dnfn(x) = fn−1 dn(x)︸ ︷︷ ︸
=0

= 0.

so fn(x) ∈ Zn(D•).

(ii) If [x] = [y] ∈ Hn(C0), then x− y ∈ Bn(C•), x− y = dn+1(z). So

fn(x)− fn(y) = fndn+1(z) = dn+1fn+1(z) ∈ Bn(D•),

so [fn(x)] = [fn(y)]. So f∗ is a well-defined function. It is a homomorphism.

Now let g• be chain homotopic to f•, i.e. gn−fn = dn+1◦hn+hn−1◦dn. Let x ∈ Zn(C•),
so

gn(x)− fn(x) = dn+1 ◦ hn(x) + hn−1 ◦ dn(x) ∈ Bn(D•).

So g∗([x]) = [gn(x)] = [fn(x)] = f∗([x]).

Start of

lecture 18 Just as we did for homotopy of maps between spaces, one checks:

(1) being chain homotopic defines an equivalence relation on the set of chain maps from
C• to D•. Write f• ' g•.

(2) if a• : A• → C• is a chain map, and f• ' g• : C• : D•, then f• ◦ a• ' g• ◦ a• and
similarly with post composition.

Definition (Chain homotopy equivalence). A chain map f• : C• → D• is a chain
homotopy equivalence if there is a g• : D• → C•, g• ◦ f• ' idC• , f• ◦ g• ' idD• .

Lemma. If f• : C• → D• is a chain homotopy equivalence, then f∗ : Hn(C•) →
Hn(D•) is an isomorphism.

Proof. Using a homotopy inverse g•, have f∗ ◦ f∗ = (f• ◦ g•)∗ = (idD•)∗ = idHn(D•) and
simlarly for g∗ ◦ f∗ = idHn(C•).

Exercise: Let
Z[n] = (→ 0

dn+1→ Z dn→ 0→ · · · ).

Describe
{Z[n]→ C•}/chain homotopy.
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7.3 Elementary calculations

Return to the chain complexes C•(K) associated to a simplicial complex K.

Lemma. Let f : K → L be a simplicial map. Then the formula

f• : Cn(K)→ Cn(L)

[a0, . . . , an] 7→ [f(a0), . . . , f(an)]

is a well-defined homomorphism, and defines a chain map f• : C•(K)→ C•(L), and
hence gives a f∗ : Hn(K)→ Hn(L).

Proof. To be well-defined, need the given formula to send Tn(K) into Tn(L). It does.
To be a chain map, need:

fn−1dn[a0, . . . , an] = fn−1

(
n∑
i=0

(−1)i[a0, . . . , âi, . . . , an]

)

=

n∑
i=0

(−1)i[f(a0), . . . , f̂(ai), . . . , f(an)]

= dnfn[a0, . . . , an]

Definition (Cone). Say a simplicial complex K is a cone with cone point v0 ∈ VK
if every simplex of K is a face of a simplex which has v0 as a vertex.

Proposition. If K is a cone with cone point v0, then the inclusion i : {v0} ↪→ K
induces a chain homotopy equivalence i• : C•({v0})→ C•(K) and so

Hn(K) ∼=

{
Z{[v0]} n = 0

0 otherwise

Proof. The only map r : VK → {v0} is a simplicial map r : K → {v0}, and r ◦ i ' id{v0}.
I claim that i ◦ r ' idC•(K). Define

hn : On(K)→ On+1(K)

[a0, . . . , an] 7→ [v0, a0, . . . , an]
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Note that this sends Tn(K) into Tn+1(K), so descends to hn : Cn(K)→ Cn+1(K). For
n > 0, then

(hn−1 ◦ dn + dn+1 ◦ hn)[a0, . . . , an] =

(
n∑
i=0

(−1)i[v0, a0, . . . , âi, . . . , an]

)

+

(
[a0, . . . , an] +

n∑
i=0

(−1)i+1[v0, a0, . . . , âi, . . . , an]

)
= [a0, . . . , an]

= (id− in ◦ rn)[a0, . . . , an]

since in ◦ rn[a0, . . . , an] = [v0, . . . , v0] = 0 as n > 0.

For n = 0,

(h−1︸︷︷︸
=0

◦d0 + d1 ◦ h0)[a0] = d1[v0, a0]− [a0]− [v0]

= (id− i0r0)[a0]

So h provides a chain homotopy from idC•(K) to i• ◦ r•.

Corollary. The standard n-simplex ∆n ⊂ Rn+1 and all its faces, L, is a cone with
any vertex as cone point. So

H i(L) ∼=

{
Z i = 0

0 otherwise

Corollary. Let K be the union of all the proper faces of ∆n ⊂ Rn+1 (i.e. the
simplicial (n− 1)-sphere). Then for n ≥ 2, we have

H i(K) ∼=


Z i = 0

Z i = n− 1

0 otherwise

Proof. Note that K is the (n − 1)-skeleton of L, so i : K → L gives an isomorphism
Ci(K)

∼=→ Ci(L) for i ≤ n− 1. These chain complexes are

C0(L) C1(L) · · · Cn−1(L) Cn(L) 0

C0(K) C1(K) · · · Cn−1(K) 0 0

dL1 dL2 dLn−1 dLn dLn+1

dK1 dK2 dKn−1 dKn
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For i ≤ n− 2,

H i(K) = H i(L) =

{
Z i = 0

0 1 ≤ i ≤ n− 2

For i > n− 1, H i(K) = 0 as there are no i-simplexes.

Hn−1(K) =
ker(dKn−1)

Im(dKn )
= ker(dKn−1) = ker(dLn−1).

As Hn−1(L) = 0, ker(dLn−1)

Im(dLn)
= 0, so ker(dLn−1) = Im(dLn). As Hn(L) = 0, we see that

dLn : Z ∼= Cn(L) → Cn−1(L) is injective. So Hn−1(K) = ker(dLn−1) = Im(dLn)
∼= Z. It is

generated by dLn [e1, . . . , en] ∈ Cn−1(K).

Start of

lecture 19 Lemma. There is an isomorphism

H0(K) ∼= Z{π0(|K|)}.

Proof. Note we have a homomorphism

φ : C0(K)→ Z{π0(|K|)}
[v] 7→ the path component of v ∈ |K|

This is onto: any path-connected component of |K| contains a vertex. If [v, w] is an
ordered 1-simplex, then d1[v, w] = [w] − [v]. But [v] and [w] lie in the same path-
connected component as the 1-simplex 〈v, w〉 goes between them. So Im(d1) ⊂ ker(φ),
so we get an induced surjective φ : H0(K) → Z{π0(|K|)}. If φ([v]) = φ([w]), choose
a path γ : I → |K| from v to w. By simplicial approximation, I = ∆1 can be sub-
divided so that there is a g : (∆1)(r) → K with |g| ' γ, i.e. there are 1-simplices
[v, v1], [v1, v2], . . . , [vk, w]. Then

[w]− [v] = d1([v, v1] + [v1, v2] + · · ·+ [vk, w])

so [v] = [w] ∈ H0(K).

7.4 Mayer-Vietoris Theorem
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Definition (Exact homomorphisms). Say that a pair of homomorphisms

A
f→ B

g→ C

is exact at B if Im(f) = ker(g). More generally, a collection of homomorphisms

· · · → Ai → Ai+1 → Ai+2 → Ai+3 → · · ·

is exact if it is exact at each Aj , where Aj has homomorphisms in and out.

A short exact sequence is an exact sequence

0→ A
f→ B

g→ C → 0.

Note that in this case, f is injective, g is surjective and Im(f) = ker(g).

Chain maps i• : A• → B• and j• : B• → C• form a short exact sequence of chain
complexes if each 0→ An

in→ Bn
jn→ Cn → 0 is a short exact sequence.

Theorem. If 0→ A•
i•→ B•

j•→ C• → 0 is a short exact sequence of chain complexes,
then there are natural homomorphisms ∂∗ : Hn(C•)→ Hn−1(A•) such that

is an exact sequence.

Proof. Constructing ∂∗ (snake lemma):

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

in

dn

jn

dn dn

in−1 jn−1
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Let [x] ∈ Hn(C•). Then dnx = 0. By surjectivity, there exists y ∈ Bn such that jny = x.
Then since the diagram commutes, and dnjny = 0, we have that jn−1dny = 0. Then
dn(y) must be in the image of in−1 (since the sequence is exact). Pick the unique z such
that in−1z = dn(y) (uniqueness follows since in−1 is injective). Then

in−2dn−1(z) = dn−1in−1(z)

= dn−1dn(y)

= 0

Since in−2 is injective, this implies that dn−1(z) = 0. So z is a cycle. We now want to
define ∂∗[x] = [z], but we must check that this is well-defined: we made a choice when
picking y, and also made a choice by picking the representative x.

∂∗ is well-defined: Suppose [x] = [x′] ∈ Hn(C•). Then x − x′ = dn+1(a), a ∈ Cn+1.
The same process for x′ gives a y′ ∈ Bn. As jn+1 is surjective, can write a = jn+1(b).
Then

jn(y − y′) = x− x′ = jndn+1(b),

so by exactness at Bn,
y − y′ = dn+1(b) + in(c)

for some c ∈ An. Now z′ is such that in−1(z
′) = dn(y

′), so

in−1(z − z′) = dn(y)− dn(y′)
= dn(y − y′)
= dn(dn+1() + in(c))

= dnin(c)

= in−1dn(c)

injectivity of in−1 again, shows z − z′ = dn(c). So [z] = [z′] ∈ Hn−1(A•).

∂∗ is a homomorphism: given [x1], [x2] ∈ Hn(C•) with corresponding y1, y2, z1, z2,
choose y1 + y2 to be the lift of x1 + x2. This gives z1 + z2 as the result, so

∂∗[x1 + x2] = [z1 + z2] = [z1] + [z2].

Exactness at Hn(C•): Let [x] ∈ Im(j∗), so there exists y ∈ Bn such that jn(y) = x
and y is a cycle. Can use this y to calculate ∂∗[x]. As y is a cycle, dn(y) = 0, so z is 0,
so ∂∗[x] = 0.

Suppose now that ∂∗[x] = 0. Calculate this by choosing y ∈ Bn and taking the corre-
sponding z. Then z = dn(t) (as [z] = 0). Then jn(y − in(t)) = x and dn(y − in(t)) =
dny − dnin(t) = in(z − z) = 0. So j∗[y − in(t)] = [x], so [x] ∈ Im(j∗).
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Exactness at Hn(B•): As jn ◦ in = 0, Im(i∗) ⊆ ker(j∗). Suppose j∗[y] = 0. Then
jn(y) = dn+1(a) for some a ∈ Cn+1. Let b ∈ Bn+1 be such that jn(b) = a. Then

jn(y − dn+1b) = dn+1(a)− jndn+1(b) = dn+1(a)− dn+1jn+1(b) = 0.

So let y−dn+1(b) = in(t). Then dn(t−dn+1(b)) = 0, so [y] = [y−dn+1(b)] = [in(t)] = i∗[t].

Exactness at Hn(A•): Let [z] ∈ ∂∗[x]. Then in(z) = dn+1(y), so i∗[z] = 0. Let [z]
be such that i∗[z] = 0. Then in(z) = dn+1(y) for some y. Thus [z] = ∂∗[jn+1(y)], so
ker(i∗) ⊆ Im(∂∗).

Start of

lecture 20 Theorem (Mayer-Vietoris Theorem). Let K be a simplicial complex, M , N be
subcomplexes, and L = M ∩ N . Suppose also that M and N cover K, i.e. every
simplex of K is in M or N . Write

L N

M K

j

i l

k

for the inclusion maps. There are natural homomorphisms ∂∗ : Hn(K)→ Hn−1(L)
such that

is a long exact sequence.

Proof. Have a short exact sequence of chain complexes

0→ C•(L)
(i∗,j∗)−→ C•(M)⊕ C•(N)

k∗−l∗−→ C•(K)→ 0

because:

(i) i• and j• are both injective, so exact at left-hand term.
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(ii) k• and l• are jointly surjective, as M and N cover K.

(iii) Suppose (x, y) ∈ Cn(M) ⊕ Cn(N) is in ker(kn − ln), i.e. kn(x) = ln(y). So both
sides are a linear combination of simplices in M ∩ N = L, i.e. ∃z ∈ Cn(L) such
that x = in(z), y = jn(z). So ker(kn− ln) ⊆ Im(in⊕ jn). Other constraint is clear.

Now apply the above algebraic theorem.

7.5 Continuous maps and homotopy inverse

Definition. Simplicial maps f, g : K → L are contiguous if for each σ ∈ K, f(σ)
and g(σ) are faces of some simplex τ of L.

Lemma. If f and g are both simplicial approximations to F : |K| → |L|, then f
and g are contiguous.

Proof. If x ∈ σ̊ ⊂ |K| and F (x) ∈ τ̊ ⊂ |L| then as in the proof of “simplicial approxima-
tions are simplicial maps”, f(σ) and g(σ) are faces of τ .

Lemma. If f, g : K → L are contiguous, then f• ' g• : C•(K) → C•(L), and so
f∗ = g∗.

Proof. Choose an ordering ≺ of VK , and represent a basis of Cn(K) by [a0, . . . , an] with
a0 ≺ a1 ≺ · · · ≺ an. Define a homomorphism

hn : Cn+1(K)→ Cn+1(L)

[a0, . . . , an] 7→
n∑
i=0

(−1)i[f(a0), . . . , f(ai), g(ai), . . . , g(ak)]

Direct calculation shows that

dn+1 ◦ hn + hn−1 ◦ dn = gn − fn.

This is the chain homotopy.

Lemma. Let K ′ be the barycentric subdivision, choose a : K ∼= VK′ → VK any
function sending σ̂ to some vertex of σ. Such an a : VK′ → VK is a simplicial
approximation to the identity map on |K| = |K ′|. Furthermore, all simplicial ap-
proximation to id are of this form.
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Proof. Seen the first part (just before the definition of mesh). If g : VK′ → VK is a
simplicial approximation to id, then

σ̊ ⊆ id(StK′(σ̂)) ⊆ StK(g(σ̂)).

So g(σ̂) must be a vertex of σ.

Proposition. If a : K ′ → K is a simplicial approximation to id, then a∗ : Hn(K
′)→

Hn(K) is an isomorphism for all n. Furthermore, this isomorphism is independent
of the choice of a.

Proof. First suppose K is a simplex σ = ∆n ⊂ Rn+1. Then K ′ is a cone with cone point
σ̂. Also K is a cone with any vertex as cone point. So a∗ : Hn(K

′) → Hn(K) is an
isomorphism for n > 0 (both sides are 0). Also, H∗0(K

′) → H0(K) is an isomorphism
too, with a∗[σ̂] = [a(σ̂)]. So done if K is a simplex.

General case: double induction on:

(i) dimK

(ii) number of simplexes of K

Let σ ∈ K be a simplex of maximal dimansion. Then L = K − {σ} is a simplicial
complex. Let

S = {σ and all its faces}, T = S ∩ L = {all proper faces of σ}.

Any simplicial approximation a : K ′ → K to id sends L′ into L, S′ into S, T ′ into T . So
we get a map of Mayer-Vietoris sequences:

Hn(T
′) Hn(S

′)⊕Hn(L
′) Hn(K

′) Hn−1(T
′) Hn−1(S

′)⊕Hn−1(L
′)

Hn(T ) Hn(S)⊕Hn(L) Hn(K) Hn−1(T ) Hn−1(S)⊕Hn−1(L)

'(a|T ′ )∗ '(aK′ )∗⊕(a|L′ )∗

∂∗

a∗ '(aT ′ )∗ '

∂∗

T ′ has dimension strictly smaller than K, so by induction hypothesis, we may assume
that (a|T ′)∗ and (a|T ′)∗ are isomorphisms. We can also use the induction hypothesis
to assume that the second and fifth downward maps are isomorphisms: we have an
isomorphism on the left since S is a simplex (and we did the simplex case earlier), and
on the right factor we have strictly fewer simplexes, so we use the induction hypothesis.

Now by the “Five lemma” (see Example Sheet 4, Question 3), we deduce that a∗ is an
isomorphism.
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lecture 21 Notation. So: if a : K ′ → K is a simplicial approximation to id, then a∗ :
Hn(K

′)→ Hn(K) is an isomorphism, and does not actually depend on a.

Call it νK : Hn(K
′)

∼→ Hn(K). Write

νK,r := νK(r−1) ◦ · · · ◦ νK′ ◦ νK : Hn(K
(r))

∼→ Hn(K)

and
νK,r,s := νK(r−1) ◦ · · · ◦ νK(s) : Hn(K

(r))
∼→ Hn(K

(s)).

Proposition. To each continuous f : |K| → |L| there is an associated homomor-
phism f∗ : Hn(K) → Hn(L) given by f∗ = s∗ ◦ ν−1

K,r, where s : K(r) → L is a
simplicial approximation to f (which exsists for some r � 0).

(i) This does not depend on the choices of s and r.

(ii) If g : |M | → |K| is another map, then (f ◦ g)∗ = f∗ ◦ g∗.

Proof. For (i) let s : K(r) → L and t : K(q) → L be simplicial approximation to f , with
r ≥ q. Let a : K(r) → K(q) be a simplicial approximation to id. Now t ◦ a, s : K(K) → L
are both simplicial approximation to f , so they are contiguous, so s∗ = (t ◦ a)∗ = t∗ ◦a∗.
But a∗ = νK,r,q, so

s∗ ◦ ν−1
K,r = t∗ ◦ νK,r,q ◦ ν−1

K,r = t∗ ◦ ν−1
K,q.

For (ii), let s : K(r) → L approximate f , and let t : M (q) → K(r) approximate g. Then
s ◦ t approximates f ◦ g, and

(f ◦ g)∗ = (s ◦ t)∗ ◦ ν−1
m,q = (s∗ ◦ ν−1

K,r) ◦ (νK,r ◦ t∗ ◦ ν
−1
m,q) = f∗ ◦ g∗

Corollary. If f : |K| → |L| is a homeomorphism, then f∗ : Hn(K)→ Hn(L) is an
isomorphism.

Proof. id = (f ◦ f−1)∗ = f∗ ◦ (f−1)∗ and id = (f−1 ◦ f)∗ = (f−1)∗ ◦ f∗, so f∗ is
invertible.

Lemma. For a simplicial complex L in Rm, there is a ε = ε(L) > 0 such that if
f, g : |K| → |L| satisfy |f(x)− g(x)| < ε ∀x ∈ |K| then f∗ = g∗ : Hn(K)→ Hn(L).
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Proof. The {St L(w)}w∈VL give an open cover of |L|, so by the Lebesgue number lemma,
there exists ε > 0 such that each B2ε(x) lies in some St L(w). Let f, g : |K| → |L| be as
in the statement, using this ε. Then {f−1(Bε(y))}y∈|L| is an open cover of |K|, so there
is a δ > 0 such that each f(Bδ(x)) ⊆ Bε(y). Then also g(Bδ(x)) ⊆ B2ε(y). Let r � 0
such that µ(K(r)) < 1

2δ. Then for each v ∈ VK(r) , the diameter of StK(r)(v) is < δ. So
f(StK(r)(v)), g(StK(r)(v)) lie in the common B2ε(w) ⊆ St L(w). Let s(v) = w. Then s
is a simplicial approximation to both f and g. So f∗ = s∗ ◦ νK, r−1 = g∗.

Theorem. If f ' g : |K| → |L|, then f∗ = g∗ : Hn(K)→ Hn(L).

Proof. Let H : |K| × I → |L| be a homotopy between them. As |K| × I is compact, H
is uniformly continuous. For the ε = ε(L) > 0 from the lemma, there is a δ > 0 such
that |s− t| < δ =⇒ |H(x, s)−H(x, t) < ε for all x ∈ |K|. Choose

0 = t0 < t1 < · · · < tk = 1

such that |ti+1 − ti| < δ. Then let fi(x) := H(x, ti). Note f0 = f , fk = g. Also, fi and
fi+1 are ε-close. So (fi)∗ = (fi+1)∗, and so f∗ = g∗.

Definition (h-triangulation). A h-triangulation of a space X is a simplicial complex
K and a homotopy equivalence g : |K| → X. We define Hn(X) := Hn(K).

Lemma. The homology of a h-triangulated space does not depend on the choice of
h-triangulation.

Proof. Let g : |K| → X be another h-triangulation. Then consider

|K| g→→ |K|,

where the second arrow is a homotopy inverse of g. The composition is a homotopy
equivalence, so induces an isomorphism Hn(K)

∼→ Hn(K). If g : |K| → X, G : |K| → X
are h-triangulations with homotopy inverses f and f , and h : X → X is a map, then

Hn(X) Hn(X)

Hn(K) Hn(K)
(f◦h◦g)∗

defines induced maps on homology for any map of h-triangulable spaces.
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lecture 22
7.6 Homology of spheres

Lemma. The sphere Sn−1 is triangulable, and for n− 1 ≥ 1 we have

Hi(S
n−1) ∼=

{
Z i = 0, n− 1

0 otherwise

Proof. ∂Dn has polyhedron homeomorphic to Sn−1, and we calculated its H•.

Theorem (Brouwer (higher dimensions)).

(i) There is no retraction of Dn to ∂Dn = Sn−1.

(ii) Any f : Dn → Dn has a fixed point.

Proof. (i) =⇒ (ii) by the same argument as the case n = 2. Let r = Dn → Sn−1 be a
retraction, and consider idSn−1 = r ◦ i. Then

id = (r ◦ i)∗ : Hn−1(S
n−1)︸ ︷︷ ︸

∼=Z

i∗→ Hn−1(D
n)︸ ︷︷ ︸

∼=n−1({∗})=0

r∗→ Hn−1(S
n−1)︸ ︷︷ ︸

∼=Z

for n− 1 > 0.

We have seen a different triangulation of Sn, via the simplicial complex K in Rn+1 with
simplexes 〈±e1, . . . ,±en+1〉 and all their faces. We must have

H i(K) ∼=

{
Z i = 0, n

0 otherwise

by independence of triangulation.

Lemma. The element

x =
∑

a∈{1,−1}n+1

a1a2 · · · an+1[a1e1, a2e2, . . . , an+1en+1]

is a cycle, and generates Hn(K) ∼= Z.
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Proof. When we apply dn to x, the simplex

[a1e1, . . . , âiei, . . . , an+1en+1]

shows up twice, corresponding to ai = +1, ai = −1. So the coefficients cancel out (so x
is a cycle).

It generates as it is clearly not divisible in Cn(K) (coefficients are ±1).

The reflection ri : Rn+1 → Rn+1 in the i-th coordinate is

(ri)∗(x) =
∑

a1 · · · an+1[a1e1, . . . , ai−1ei−1,−aiei, ai+1ei+1, . . . , an+1en+1]

= −x

So (ri)∗ : Hn(S
n)→ Hn(S

n) is multiplication by −1.

The antipodal map a : Sn → Sn is r1r2 · · · rn+1. So

a∗ : Hn(S
n)→ Hn(S

n)

is multiplication by (−1)n+1.

Corollary. If n is even, then a : Sn → Sn is not homotopic to id.

7.7 Homology of surfaces

Example

Homology of K: consider
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Then |W | ↪→ |K| is a homotopy equivalence. Apply Mayer-Vietoris to

to obtain
H0(K) = Z{[1]}, H1(K) = Z{a, b}

where a = [1, 2] + [2, 3] + [3, 1] and b = [1, 4] + [4, 5] + [5, 1].

Note: r = [5, 6] + [6, 9] + [9, 5] ∼ a+ b− a− b = 0.

Homology of Kg: can decompose Kg = Kg−1∪K, where Kg−1∩K = ∆1. Mayer-Vietoris
gives

so H0(Kg) = Z{a vertex}, H1(Kg) = Z2g, H2(Kg) = 0. Note L = ∂Kg is the cycle
r1 + r2 + · · ·+ rg = 0.

Let Σg = |Kg|
⋃

|L| |CL|.

Homology of Kg ∪ CL: Apply Mayer-Vietoris, using Kg ∩ CL = L, a a triangulation of
S1.
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so H0(Kg ∪ CL) ∼= Z, H1(Kg ∪ CL) ∼= Z2g, H2(Kg ∪ CL) ∼= Z. So this is the homology
of Σg, so in particular, given different values of g, the Σg will be non-homeomorphic,
since their homologies will differ.

Start of

lecture 23
Example (non-orientable surfaces)

Homology of K: the subcomplex |W | ⊂ |K| with

is such that |K| deformation retracts to it, so H0(K) = Z{vertex}, H1(K) = Z{u},
u = [1, 2] + [2, 3] + [3, 1] and H i(K) = 0 for i > 1.
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Note r = [4, 5] + [5, 6] + [6, 4] is homologous to 2u.

Homology of Kn: Kn = Kn−1 ∪K, Kn−1 ∩K = ∆1. So Mayer-Vietoris gives:

So inductively H0(Kn) = Z{a vertex}, H1(Kn) = Zn = Z{u1, . . . , un}, H2(Kn) = 0 for
i ≥ 2.

The boundary L of Kn is the cycle r1 + r2 + · · ·+ rn = 2(u1 + · · ·+ un).

Homology of Kn ∪ CL: Mayer-Vietoris again:

Note (∗) sends the generator to r1 + r2 + · · ·+ rn = 2(u1 + · · ·+ un). So (∗) is injective,
which tells us that the previous map ∂∗ is 0.

So H0(Kn ∪ CL) = Z, H1(Kn ∪ CL) = Z{u1,...,un}
〈2(u1+···+un)〉

∼= Z/2Z ⊕ Zn−1, and finally
H i(Kn ∪ CL) = 0 for i ≥ 2. This is H∗(Sn).

The surfaces:

S2 Σg Sn
H1 0 Z2g Z/2Z⊕ Zn−1

H2 Z Z 0
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are all not homotopically equivalent to each other.

Theorem. Every triangulable surface is homeomorphic to one of these.

7.8 Rational homology, Euler and Lefschetz numbers

Definition (On(K;Q)). For a simplicial complex K, let On(K;Q) be the Q-vector
space with basis the ordered simplexes of K. Define Tn(K;Q) as usual, and so get
Cn(K;Q). Define dn by the same formula, and

Hn(K;Q) =
ker(dn : Cn(K;Q)→ Cn−1(K,Q))

Im(dn+1 : Cn+1(K;Q)→ Cn(K;Q)
.

This is a Q-vector space.

Lemma. If Hn(K) ∼= Zr ⊕ (finite abelian group), then Hn(K;Q) ∼= Qr.

Proof. See Example Sheet 4, Question 5.

Example.

H i(S6n;Q) =

{
Q i = 0, n

0 otherwise

H i(Σg;Q) =


Q i = 0, 2

Q2g i = 1

0 otherwise

H i(Sn;Q) =


Q i = 0

Qn−1 i = 1

0 otherwise

Definition (Lefschetz number). Let X be a polyhedron (∼= |K|) and f : X → X
be a continuous map. The Lefschetz number of f is

L(f) =
∞∑
i=0

(−1)iTr(f∗ : H i(X;Q)→ H i(X;Q)).

88

https://www.maths.cam.ac.uk/undergrad/examplesheets


Definition (Euler characteristic). The Euler characteristic of X is

χ(X) = L(id) =

∞∑
i=0

(1)i dimQH i(X;Q).

Example.

χ(Sn) = 1 + (−1)n =

{
2 n even
0 n odd

χ(Σg) = 2− 2g, χ(Sn) = 2− n.

Example. The antipodal map a : Sn → Sn induces the identity map on H0(S
n;Q),

and multiplication by (−1)n+1 on Hn(S
n;Q). So L(a) = 1 + (−1)n(−1)n+1 = 0.

Lemma. Let V be a finite-dimensional vector space, W ≤ V a subspace, and
A : V → V a linear map such that A(W ) ≤ W . Let B = A|W : W → W and
C : V/W → V/W the map induced by A. Then

Tr(A) = Tr(B) + Tr(C).

Proof. Let e1, . . . , er be a basis for W , and extend it to a basis of V . In this basis,

A =

(
B ∗
0 C

)
so Tr(A) = Tr(B) + Tr(C).

Corollary. For a chain map f• : C•(K;Q)→ C•(K;Q), we have

∞∑
i=0

(−1)iTr(f∗ : H i(K;Q)→ H i(K;Q)) =

∞∑
i=0

(−1)iTr(fi : Ci(K;Q)→ Ci(K;Q))

Proof. Consider
0→ Bi(K;Q)→ Zi(K;Q)→ Hi(K;Q)→ 0

0→ Zi(K;Q)→ Ci(K;Q)
di→ Bi−1(K;Q)→ 0
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Let fC , fZ , fB, fH be the induced maps on chains / cycles / boundary / homology.∑
(−1)iTr(fHi ) =

∑
(−1)i(Tr(fZi )− Tr(fBi ))

=
∑

(−1)i(Tr(fCi )− Tr(fBi−1)− Tr(fBi ))

=
∑

(−1)iTr(fCi )

Corollary.

χ(|K|) =
∞∑
i=0

(−1)i#{i-simplices of K}

Start of

lecture 24 Lemma. There is a chain map s• : C•(K)→ C•(K
′) given by sending a simplex σ

to an appropriate linear combination of the simplexes of K ′ which compose σ. On
H∗ it induces ν−1

K : Hn(K)
∼→ Hn(K

′).

Proof. Start by s0([v0]) = [v̂0]. Supposing s0, . . . , sn−1 have been defined and satisfy
di ◦ si = si−1 ◦ di for all i < n. Then define sn(σ) = [σ̂, sn−1dn(σ)], interpreted linearly
in the second variable.

Example: s1([v0, v1]) = [ ̂〈v0, v1〉, 〈̂v1〉 − 〈̂v0〉] = [ ̂〈v0, v1〉, 〈̂v1〉]− [ ̂〈v0, v1〉, 〈̂v0〉].

We calculate

dnsn([v0, . . . , vn]) = [ ̂〈v0, . . . , vn〉, sn−1dn[v0, . . . , vn]]

= sn−1dn[v0, . . . , vn]− [ ̂〈v0, . . . , vn〉, dn−1sn−1︸ ︷︷ ︸
sn−2dn−1

dn[v0, . . . , vn]]

= sn−1dn[v0, . . . , vn]

so dnsn = sn−1dn. So this s• is a chain map. Let ≺ be an ordering of VK and a : K ∼=
VK′ → VK send σ̂ to the smallest vertex of σ with respect to ≺. This is some simplicial
approximation to id. Now a0 ◦ s0 = id. Suppose ai ◦ si = id for i < n. If [v0, . . . , vn],

90

https://notes.ggim.me/AlgT#lecturelink.24


v0 ≺ · · · ≺ vn then

ansn([v0, . . . , vn]) = an([ ̂〈v0, . . . , vn〉, sn−1dn[v0, . . . , vn]])

= [v0, an−1sn−1︸ ︷︷ ︸
id

dn[v0, . . . , vn]]

= [v0, dn[v0, . . . , vn]]

= [v0, 〈v1, . . . , vn〉 −
∑
±〈v0, . . . , v̂i, . . . , vn〉]

= [v0, . . . , vn]

So a∗ ◦ s∗ = id, so ν ◦ s∗ = id, so s∗ = ν−1
K .

Theorem (Lefschetz Fixed Point Theorem). Let f : X → X be a map of polyhedra.
If L(f) 6= 0 then f has a fixed point.

Proof. Let X ∼= |K| ⊂ RN . Suppose f does not have a fixed point. Let

δ := inf{|x− f(x)|, x ∈ X}.

As X is compact, δ > 0. LetK be a triangulation of X with µ(K) < δ
2 , and choose a sim-

plicial approximation g : K(r) → K to f . For v ∈ VK(r) we have f(v) ∈ f(StK(r)(v)) ⊂
StK(g(v)), so |f(v)− g(v)| < δ

2 . But |f(v)− v| > δ, so |g(v)− v| > δ
2 . So if v ∈ σ ∈ K,

then g(v) /∈ σ. The map f∗ is defined as g∗ ◦ ν−1
K,r = g∗ ◦ s(r)∗ where s(r)∗ is the r-fold

iteration of the map in the previous Lemma. So

L(f) :=
∑
i

(−1)iTr(f∗ : Hi(X)→ Hi(X))

=
∑
i

(−1)iTr(gi ◦ s(r)i : Ci(K)→ Ci(K))

by last lecture. If σ ∈ K is an i-simplex, then s
(r)
i (σ) is a sum of simplexes inside σ, so

gis
(r)
i (σ) is a sum of simplexes not including σ. So the matrix for gi ◦ s(r)i has zeroes on

the diagonal, so the trace is 0.

Example. If X is a contractible polyhedron, then

Hn(X) =

{
Z n = 0

0 otherwise

so any f : X → X has L(f) = 1, so has a fixed point.
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Example. S1 = RP2 has

Hn(RP2) =


Z n = 0

Z/2Z n = 1

0 otherwise

so

Hn(RP2;Q) =

{
Q n = 0

0 otherwise

so any f : RP2 → RP2 has L(f) = 1, so has a fixed point.

Example. Let G be a topological group which is path-connected and non-trivial.
Suppose it is a polyhedron. If g 6= 1 ∈ G, then g · • : G→ G has no fixed points, so

0 = L(g · •) = L(1 · •) = L(id) = χ(G)

as g · • ' 1 · • as G is path-connected. This can be used to show that certain
topological spaces cannot be given a topological group structure.

Example. Consider S3, which is the connected sum of three copies of RP2. Let
f : S3 → S3 be such that f ◦ f = id. We have

Hn(S3;Q) ∼=


Q n = 0

Q2 n = 1

0 otherwise

so L(f) = 1 − Tr(f∗ : H1(S3;Q) → H1(S3;Q)). As f ◦ f = id, f∗ ◦ f∗ = id. So
f∗ : H1(S3;Q)→ H1(S3,Q) squares to id. So its minimal polynomial divides x2−1,
so it is diagonalisable with eigenvalues ±1. So its trace is one of {2, 0,−2}. So
L(f) ∈ {−1, 1, 3}, none of which are 0, so f has a fixed point.
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