%! TEX root = AG.tex % vim: tw=50 % 07/02/2024 12PM \begin{remark*} In proof of previous propositions, we had a statement $\Z(\{h_i\}) = \emptyset$, and hence by \nameref{null_II}, $1 \in \langle \{h_i\} \rangle$, and hence we can write $1 = \sum_{i \in I} e_i h_i$ for $I$ a finite index set. \end{remark*} \newpage \section{Projective Varieties} \begin{flashcard}[projective-space-defn] \begin{definition*}[$\PP^n$] \glssymboldefn{P}{$P^n$}{$P^n$} \cloze{Let $\KK$ be a field. We define \[ \PP^n = (\KK^{n + 1} \setminus \{(0, \ldots, 0)\}) / \sim \] where $(x_0, \ldots, x_n) \sim (\lambda x_0, \ldots, \lambda x_n)$ for any $\lambda \in \KK^\times \defeq \KK \setminus \{0\}$. Alternatively, this is the set of one-dimensional sub-vector spaces of $\KK^{n + 1}$.} \end{definition*} \end{flashcard} \begin{remark*} If $\KK = \RR$, then $\PP^n = S^n / \sim$, with $x_n \sim -x$ ($S^n \subseteq \RR^{n + 1}$ is the unit sphere). \end{remark*} \vspace{-1em} For arbitrary $\KK$: Consider $\P^1$. For $(x_0 : x_1) \in \P^1$, if $x_1 \neq 0$, then \[ (x_0 : x_1) \sim \left( \frac{x_0}{x_1} : 1 \right) \in \AA^1 \] (since there is a unique representative with seconc coordinate $1$). The missing points are of the form $(x_0 : 0) \sim (1 : 0)$. Thus we view $\P^1$ as \[ \P^1 = \AA^1 \cup \{\ub{(1 : 0)}_{=\infty}\} .\] This is the Riemann sphere if $\KK = \CC$. Now $\P^2$: for $(x_0 : x_1 : x_2) \in \P^2$, if $x_2 \neq 0$, then \[ (x_0 : x_1 : x_2) \sim \left( \frac{x_0}{x_2} : \frac{x_1}{x_2} : 1\right) \in \AA^2 .\] If $x_2 = 0$, we get a point $(x_0 : x_1 : 0) \in \P^1$. Thus \[ \P^2 = \AA^2 \cup \P^1 \] where $\P^1$ can be viewed as the `line at infinity'. Algebraic subsets of $\P^n$? When does $f(x_0, \ldots, x_n) = 0$ make sense? \begin{flashcard}[homogeneous-poly-defn] \begin{definition*}[Homogeneous] \glsadjdefn{homog}{homogeneous}{polynomial} \glspropdefn{deg}{degree}{homogeneous polynomial} \cloze{$f \in S = \KK[x_0, \ldots, x_n]$ is \emph{homogeneous} if every term of $f$ is of the same degree, or equivalently, \[ f(\lambda x_0, \ldots, \lambda x_n) = \lambda^d f(x_0, \ldots, x_n) \] for some $d \ge 0$, where $d$ is the \emph{degree} of $d$.} \end{definition*} \end{flashcard} \begin{example*} $x_0^3 + x_1 x_2^2$ is \gls{homog} of \gls{deg} $3$. $x_0^3 + x_1^2$ is not \gls{homog}. \end{example*} \begin{flashcard}[zeroes-in-Pn] \begin{definition*}[Zero set of $f$ in $\P^n$] \glssymboldefn{PZ}{$Z(T)$}{$Z(T)$} \cloze{If $T \subseteq S$ is a set of \gls{homog} polynomials, define \[ Z(T) \defeq \{(a_0, \ldots, a_n) \in \P^n \st f(a_0, \ldots, a_n) = 0 ~\forall f \in T\} .\]} \end{definition*} \end{flashcard} \begin{flashcard}[homog-ideal-defn] \begin{definition*}[Homogeneous ideal] \glsadjdefn{homid}{homogeneous}{ideal} \cloze{An ideal $I \subseteq S$ is \gls{homog} if $I$ is generated by \gls{homog} polynomials.} \end{definition*} \end{flashcard} \begin{flashcard}[zero-set-of-ideal] \begin{definition*}[Zero set of ideal] \glssymboldefn{IZ}{$Z(I)$}{$Z(I)$} For $I$ a \gls{homid} ideal, we define \[ Z(I) = \{(a_0, \ldots, a_n) \in \P^n \st f(a_0, \ldots, a_n) = 0 ~\forall f \in I \text{ \gls{homog}}\} .\] \end{definition*} \end{flashcard} \begin{flashcard}[algebraic-subset-of-Pn] \begin{definition*}[Algebraic subset of $\P^n$] \glsadjdefn{Palgset}{algebraic}{subset} \cloze{A subset of $\P^n$ is \emph{algebraic} if it is of the form $\PZ(T)$ for some $T$.} \end{definition*} \end{flashcard} \begin{example*} $\PZ(a_0 x_0 + a_1 x_1 + a_2 x_2) \subseteq \P^2$, $a_0, a_1, a_2 \in \KK$. In the $\AA^2 \subseteq \PP^2$ where $x_2 = 1$, we get the equation $a_0 x_0 + a_1 x_1 + a_2 = 0$. If $x_2 = 0$, we get the equation $a_0 x_0 + a_1 x_1 = 0$, which has the solution $(a_1 : -a_0) \in \P^1$ (assuming not both $a_0 = 0$, $a_1 = 0$, since otherwise just have $x_2 = 0$, the line at $\infty$) \begin{center} \includegraphics[width=0.6\linewidth]{images/cbf651fda45e4b83.png} \end{center} \end{example*} \vspace{-1em} \glsadjdefn{pclosed}{closed}{sets} \glsadjdefn{popen}{open}{sets} \textbf{Exercise:} Check the \gls{Palgset} sets in $\P^n$ form the closed sets of a topology on $\P^n$. This is the \emph{Zariski topology} on $\P^n$. \begin{flashcard}[projective-variety-defn] \begin{definition*}[Projective variety] \glsnoundefn{projvty}{projective variety}{projective varieties} \cloze{A \emph{projective variety} is an \gls{irredsub} closed subset of $\P^n$.} \end{definition*} \end{flashcard} \subsubsection*{The standard open affine cover of $\PP^n$} Define $U_i \subseteq \P^n$ by \[ U_i = \P^n \setminus \Z(x_i) ,\] an open subset of $\P^n$. Note $\bigcup_{i = 1}^n U_i = \P^n$. We have a bijection $\varphi_i : U_i \to \AA^n$, given by \[ \varphi_1(x_0 : \ldots : x_n) = \left( \frac{x_0}{x_i}, \ldots, \widehat{\frac{x_i}{x_1}}, \ldots, \frac{x_n}{x_i} \right) \] (hat means this is omitted). \begin{proposition*} With $U_i$ carrying the topology induced from $\P^n$, and $\AA^n$ the \glsref[zopen]{Zariski topology}, $\varphi_i$ is a homeomorphism. \end{proposition*} \begin{proof} Since $\varphi_i$ is a bijection, enough to show $\varphi_i$ identifies closed sets of $U_i$ with closed sets of $\AA^n$. Can take $c = 0$, $\varphi = \varphi_0$, $U = U_0$. Let $S = \KK[X_0, \ldots, X_n]$, $S^h$ be the set of \gls{homog} polynomials in $S$. Let $A = \KK[Y_1, \ldots, Y_n]$. Define maps $\alpha : S^n \to A$, $\beta : A \to S^n$ by $\alpha(f(x_0, \ldots, x_n)) = f(1, y_1, \ldots, y_n)$. If $g \in A$ of degree $e$ (highest degree term is degree $e$), then define \[ \beta(g) = x_0^e g \left( \frac{x_1}{x_0}, \ldots, \frac{x_n}{x_0} \right) \] \textbf{Remark:} This is a process known as \emph{homogenisation}. For example, $y_2^2 - y_1^3 - y_1 + y_1 y_2$ becomes \[ x_0^3 \left( \frac{x_2^2}{x_0^2} - \frac{x_1^3}{x_0^3} - \frac{x_1}{x_0} + \frac{x_1 x_2}{x_0^2} \right) = x_0 x_2^2 - x_1^3 - x_0^2 x_1 + x_0 x_1 x_2 .\] under $\beta$. If $Y \subseteq U$ is closed, then $Y$ is the intersection $\ol{Y} \cap U$ where $\ol{Y} \subseteq \P^n$ is a closed subset, which we can take to be the closure of $Y$. $\ol{Y} = \IZ(T)$ for some $T \subseteq S^h$. Let $T' = \alpha(T)$. Then $\varphi(Y) = \Z(\alpha(T))$. Check: \begin{align*} f(a_0 : \ldots : a_n) = 0, (a_0 \neq 0) &\iff f \left( f, \frac{a_1}{a_0}, \ldots, \frac{a_n}{a_0} \right) = 0 \\ &\iff (\alpha(f)) \left( \frac{a_1}{a_0}, \ldots, \frac{a_n}{a_0} \right) \\ &\iff \alpha(f)(\varphi(a_0, \ldots, a_n)) = 0 \end{align*}