%! TEX root = AG.tex % vim: tw=50 % 05/02/2024 12PM \begin{flashcard}[null-I-thm] \begin{theorem*}[Nullstellensatz I] \label{null_I} \cloze{Let $\KK$ be algebraically closed. Then any maximal ideal $M \subset \KK[X_1, \ldots, X_n]$ is of the form \[ M = \langle X_1 - a_1, \ldots, X_n - a_n \rangle \] for some $a_1, \ldots, a_n \in \KK$.} \end{theorem*} \begin{proof} \cloze{Note we have an isomorphism \begin{align*} \frac{\KK[X_1, \ldots, X_n]}{\langle X_1 - a_1, \ldots, X_n - a_n \rangle} &\stackrel{\cong}{\longrightarrow} \KK \\ X_i &\longmapsto a_i \end{align*} Recall $M \subseteq \polyA$ is a maximal ideal if and only if $\polyA / M$ is a field. Thus $\langle X_1 - a_1, \ldots, X_n - a_n \rangle$ is a maximal ideal. Conversely, let $M \subseteq \KK[X_1, \ldots, X_n]$ be a maximal ideal. Then \[ \frac{\KK[X_1, \ldots, X_n]}{M} \cong F \] for some field $F$ which is finitely generated as a \Kalgebra{\KK} by $X_1, \ldots, X_n$. Thus $F = \KK$ by \nameref{hn_lemma4}. We thus have an isomorphism \[ \varphi : \frac{\KK[X_1, \ldots, X_n]}{M} \stackrel{\cong}{\longrightarrow} \KK .\] Let $a_i = \varphi(X_i)$. Then \[ \varphi(X_i - a_i) = \varphi(X_i) - a_i = a_i - a_i = 0 .\] Thus $X_i - a_i \in M$ for each $i$. So \[ \langle X_1 - a_1, \ldots, X_n - a_n \rangle \subseteq M .\] But we have already seen that $\langle X_1 - a_1, \ldots, X_n - a_n \rangle$ is maximal, so we must in fact have equality.} \end{proof} \end{flashcard} \begin{example*} $\langle X^2 + 1 \rangle \le \RR[X]$ is a maximal ideal, but $\langle X^2 + 1 \rangle \neq \langle X - a \rangle$ for any $a \in \RR$. \end{example*} \begin{flashcard}[null-II-thm] \begin{theorem*}[Nullstellensatz II] \label{null_II} \cloze{Let $\KK$ be algebraically closed, and $I = \langle f_1, \ldots, f_r \rangle \subseteq \KK[X_1, \ldots, X_n]$. Then either: \begin{enumerate}[(1)] \item $I = \KK[X_1, \ldots, X_n]$, or \item $\Z(I) \neq \emptyset$. \end{enumerate}} \end{theorem*} \begin{proof} \cloze{Suppose $1 \notin I$, i.e. not in case (1). Then there exists a maximal ideal $M \subseteq \KK[X_1, \ldots, X_n]$ with $I \subseteq M$. Thus $\Z(M) \subseteq \Z(I)$. Then by \nameref{null_I}, $M = \langle X_1 - a_1, \ldots, X_n - a_n \rangle$, and hence $\Z(M) = \{(a_1, \ldots, a_n)\}$. So $\Z(M) \neq \emptyset$, so $\Z(I) \neq \emptyset$.} \end{proof} \end{flashcard} \begin{flashcard}[null-III-thm] \begin{theorem*}[Nullstellensatz III] \label{null_III} \cloze{Let $\KK$ be algebraically closed, $I \subseteq \KK[X_1, \ldots, X_n]$ an ideal. Then \[ \I(\Z(I)) = \sqrtideal{I} .\]} \end{theorem*} \begin{proof} \cloze{$\sqrtideal{I} \subseteq \I(\Z(I))$ in any event. Let $g \in \KK[X_1, \ldots, X_n]$. Define \[ V_g = \Z(Z g(X_1, \ldots, X_n) - 1) \subseteq \AA^{n + 1} \] with coordinates $X_1, \ldots, X_n, Z$. Projecting $V_g$ via $(X_1, \ldots, X_n, Z) \mapsto (X_1, \ldots, X_n)$ gives the set \[ D(g) \defeq \AA^n \setminus \Z(g) .\] Now suppose $g \in \I(\Z(I))$. Then $D(g) \cap \Z(I) = \emptyset$. If $I = \langle f_1, \ldots, f_r \rangle$, consider $J = \langle f_1, \ldots, f_r, Zg - 1 \rangle \subseteq \KK[X_1, \ldots, X_n, Z]$. Then $\Z(J) = \emptyset$, so $J = \KK[X_1, \ldots, X_n, Z]$ by \nameref{null_II}. Thus we can write \[ 1 = \sum_i h_i(X_1, \ldots, X_n, Z) f_i(X_1, \ldots, X_n) + h(X_1, \ldots, X_n, Z) (g(X_1, \ldots, X_n) Z - 1) \] with $h_i, h \in \KK[X_1, \ldots, X_n, Z]$. Substitute $Z = \frac{1}{g}$. We get \[ 1 = \sum_i h_i\left(X_1, \ldots, X_n, \frac{1}{g}\right) f_i(X_1, \ldots, X_n) .\] Multiplying by a high power of $g$ clears denominators, giving: \[ g^N = h_i'(X_1, \ldots, X_n) f_i \in I ,\] for some $h_i'$. Thus $g^n \in I$, so $g = \sqrtideal{I}$.} \end{proof} \end{flashcard} Recall we need the proof of: \begin{flashcard}[OX-equals-AX-prop] \begin{proposition*} If $X \subseteq \AA^n$ is an \gls{affvty}, then $\OX_X(X) = \cring A(X)$. \end{proposition*} \fcscrap{ \begin{lemma*} Let $f, g : X \to \KK$ be \gls{regf} functions on $X$ an \gls{affvty}, and suppose there exists \gls{zzopen} $U \subseteq X$ non-empty with $f|_U = g|_U$. Then $f = g$. \end{lemma*} \begin{proof} Consider the map $\varphi = (f, g) : X \to \AA^2$. This is a morphism (exercise: check this!). Let $\Delta = \{(a, a) \in \AA^2 \st a \in \KK\}$, $\Delta = \Z(X - Y)$. Since $\varphi$ is continuous, $\varphi^{-1}(\Delta)$ is closed. But $U \subseteq \varphi^{-1}(\Delta)$, and $U$ is a dense subset of $X$ (otherwise $X = \ol{U} \cup X \setminus U$ is a union of two proper closed subsets, violating irreducibility of $X$). Thus $U \subseteq \ol{U} = X \subseteq \varphi^{-1}(\Delta)$, so $\varphi^{-1}(\Delta) = X$. \end{proof} } \begin{proof}[Proof of Proposition] \cloze{We know $\cring A(X) \subseteq \OX_X(X)$. So let $f : X \to \KK$ be a \gls{regf} function. So there exists an open cover $\{U_i\}$ of $X$ with $f$ is given on $U_i$ by $f|_{U_i} = \frac{g_i}{h_i}$, with $g_i, h_i \in \cring A(X)$ and $h_i$ nowhere vanishing on $U_i$. Then \[ \Z(\{h_i\}) = \bigcap_i \Z(h_i) \le \bigcap_i X \setminus U_i = X \setminus \bigcup_i U_i = \emptyset .\] Thus $\Z(\{h_i\}) = \emptyset$. Thus we can find $e_i \in \cring A(X)$ (Remark: Pull back to $\KK[X_1, \ldots, X_n]$ and \nameref{null_II} to see this) such that $1 = \sum_i e_i h_i$. Note on $U_i \cap U_j$, $\frac{g_i}{h_i} = \frac{g_j}{h_j}$, so $g_i h_j = g_j h_i$ on $U_i \cap U_j$, so by the Lemma, $g_i h_j = g_j h_i$ on $X$. Thus $\frac{g_i}{h_i} = \frac{g_j}{h_j}$ in $\K(X)$. Thus we have the equality in $\K(X)$ \[ f = \sum_i (e_i h_i) \left( \frac{g_i}{h_i} \right) = \sum_i g_i \in \cring A(X) \qedhere \] } \end{proof} \end{flashcard}