%! TEX root = AG.tex % vim: tw=50 % 02/02/2024 12PM \begin{flashcard}[intdom-incl-alg-to-integral-lemma] \begin{lemma} \refsteplabel[Lemma 1]{hn_lemma1} Let $A \le B$ be an inclusion of integral domains, and assume the fraction field $K$ of $A$ is contained in $B$. If $b \in B$ is algebraic over $K$, then there exists $p \in A$ non-zero such that $pb$ is \gls{intel} over $A$. \end{lemma} \begin{proof} \cloze{Suppose $g \in K[X]$ with $g(b) = 0$, $g \neq 0$. By clearing denominators, we can assume $g \in A[X]$. Write \[ g(X) = a_N X^n + \cdots + a_0, \qquad a_n \neq 0, a_i \in A .\] Note \[ a_N^{N - 1} g = (a_N X)^n + a_{N - 1}(A_N X)^{N - 1} + a_{N - 2} a_N \cdot (a_N X)^{N - 2} + \cdots + a_0 a_N^{N - 1} .\] This is a monic polynomial in $a_N X$. Thus taking $X = b$, we thus have a monic polynomial killing $a_N b$. So $a_N b$ is \gls{intel} over $A$ and we take $p = a_N$.} \end{proof} \end{flashcard} \begin{flashcard}[UFD-intel-ff-is-integer] \begin{lemma} \refsteplabel[Lemma 2]{hn_lemma2} Let $A$ be a UFD with fraction field $K$. Then if $\alpha \in K$ is \gls{intel} over $A$, we have $\alpha \in A$. \end{lemma} \begin{proof} \cloze{If $\alpha \in K$ is \gls{intel} over $A$, write $\alpha = \frac{a}{b}$, with $a, b$ having no commmon factor. We have $g \left( \frac{a}{b} \right) = 0$ for some monic polynomial $g$, say \[ g(X) = X^n + a_1 X^{n - 1} + \cdots + a_n .\] We have \[ \frac{a^n}{b^n} + a_1 \frac{a^{n - 1}}{b^{n - 1}} + \cdots + a_n = 0 \] in $K$. So \[ a^n + a_1 ba^{n - 1} + \cdots + a_n b^n = 0 \] in $A$. So $b \mid a$, so $b$ must be a unit in $A$. Thus $\frac{a}{b} \in A$.} \end{proof} \end{flashcard} \begin{flashcard}[intel-subring-lemma] \begin{lemma} \refsteplabel[Lemma 3]{hn_lemma3} Let $A \le B$ be integral domains, and $S \subseteq B$ the set of all elements in $B$ \gls{intel} over $A$. Then $S$ is a subring of $B$. \end{lemma} \begin{proof} \cloze{If $b_1, b_2 \in S$, then $A[b_1]$ is a finitely generated $A$-module. Also, $b_2$ is \gls{intel} over $A$, and hence is \gls{intel} over $A[b_1]$. Thus $A[b_1][b_2] = A[b_1, b_2]$ is a finitely generated $A[b_1]$-module. Thus $A[b_1, b_2]$ -s a finitely generated $A$-module. Since $A[b_1 \pm b_2], A[b_1 \cdot b_2] \subseteq A[b_1, b_2]$, we have $b_1 \pm b_2, b_1 \cdot b_2 \in S$ by the proposition. We also have $0, 1 \in S$ since $A \subset S$.} \end{proof} \end{flashcard} \begin{flashcard}[hn-vzero-lemma] \begin{lemma}[Hilbert's Nullstellensatz, Version 0] \refsteplabel[Lemma 4]{hn_lemma4} \cloze{Let $\KK$ be an algebraically closed field, and $F / \KK$ a field extension which is finitely generated as a $\KK$-algebra (i.e. $\exists$ a surjective $\KK$-algebra homomorphism $\KK[X_1, \ldots, X_d] \to F$). Then $F = \KK$.} \end{lemma} \begin{proof} \cloze{Suppose $\alpha \in F$ is algebraic over $\KK$, say with irreducible polynomial $f(X) \in \KK[X]$. Then $f$ is linear since $\KK$ is algebraically closed, hence of the form $c(X - \alpha)$. So $\alpha \in \KK$. Suppose we are given a surjective map \begin{align*} \KK[X_1, \ldots, X_d] &\to F \\ x_i &\mapsto z_i \in F \end{align*} Then $z_1, \ldots, z_d$ generate $F$ as a field extension of $\KK$. Assume $z_1, \ldots, z_e$ form a \gls{transc_basis} for $F / \KK$. Note that if $F \neq \KK$, we must have $e \ge 1$. Let $R = \KK[z_1, \ldots, z_e] \le F$ (note that this really is a polynomial ring since $z_1, \ldots, z_e$ are \gls{algindep}). Then $w_1 = z_{e + 1}, \ldots, w_{d - e} = z_d$ are algebraic over $L = \KK(z_1, \ldots, z_e)$. Let $S \le F$ be the set of elements of $F$ \gls{intel} over $R$. $S$ is a subring of $F$ by \nameref{hn_lemma3}. By \nameref{hn_lemma1}, there exists $p_1, \ldots, d_{d - e} \in R$ with $t_i \defeq p_i w_i$ \gls{intel} over $R$. In particular, $t_1 \in S$. Choose $\frac{f}{g} \in \KK(z_1, \ldots, z_e) = L$, $f, g \in R$, with $f, g$ relatively prime. Then $g$ is relatively prime to $p_1, \ldots, p_{d - e}$. Here, we assume $e \ge 1$. Thus \[ p_1^{n_1} \cdots p_{d - e}^{n_{d - e}} \frac{f}{g} \notin \KK[z_1, \ldots, z_e] \] for any $n_1, \ldots, n_{e - d} \ge 0$. Since $z_1, \ldots, z_d$ generate $F$ as a $\KK$-algebra there exists $q \in \KK[X_1, \ldots, X_d]$ such that \[ \frac{f}{g} = q(z_1, \ldots, z_d) = q\left(z_1, \ldots, z_e, \ub{\frac{t_1}{p_1}}_{z_{e + 1}}, \ldots, \ub{\frac{t_{d - e}}{p_{d - e}}}_{z_d} \right) \tag{$*$} \label{lec7_l132} \] Let $n_j$ be the highest power of $X_{e + j}$ appearing in $q$. Multiplying by $\prod_j p_j^{n_j}$ clears denominators on RHS of \eqref{lec7_l132}. So we have \[ p_1^{n_1} \cdots p_{d - e}^{n_{d - e}} \frac{f}{g} = q'(z_1, \ldots, z_e, t_1, \ldots, t_{d - e}) \tag{$**$} \label{lec7_l139} \] The RHS of \eqref{lec7_l139} lies in $S$ as $z_1, \ldots, z_e \in S$, $t_1, \ldots, t_{d - e} \in S$. Thus LHS lies in $S$. But LHS lies in $\KK(z_1, \ldots, z_e)$ and hence by \nameref{hn_lemma2}, lies in $\KK[z_1, \ldots, z_e]$, a contradiction. Thus $e = 0$, and $F$ is algebraic over $\KK$, so $F = \KK$ since $\KK$ is algebraically closed.} \end{proof} \end{flashcard}