%! TEX root = AG.tex % vim: tw=50 % 31/01/2024 12PM \begin{lemma*} Let $M$ be a finitely generated $A$ module for $A$ a commutative ring $I \subseteq A$, $\phi : M \to M$ an $A$-module homomorphism such that \[ \phi(M) \subseteq I \cdot M = \langle a \cdot m \st a \in I, \in M \rangle ,\] where $\langle \cdots \rangle$ represents the submodule of $M$ generated by those elements. Then there exists an equation \[ \phi^n + a_i \phi^{n - 1} + \cdots + a_n \equiv 0 \] with $a_i \in I$. Interpretation: $a_i$ represents the homomorphism $m \mapsto a_i m$. \end{lemma*} \begin{proof} Let $x_1, \ldots, x_n \in M$ be a set of generators for $M$. Then each $\phi(x_i) \in I \cdot M$, so can write \[ \phi(x_i) = \sum_{j = 1}^n a_{ij} \cdot x_j \] with $a_{ij} \in I$, i.e. \[ \sum_{j = 1}^n (\delta_{ij} \phi - a_{ij}) x_j = 0 \] So \[ \begin{pmatrix} \phi - a_{11} & -a_{12} & \cdots \\ -a_{21} & \phi - a_{22} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = 0 \] Multiplying by the adjoing matrix, we get \[ \det((\delta_{ij} \phi - a_{ij})) x_j = 0 \qquad \forall j \] But $\det(\delta_{ij} \phi - a_{ij})$ is a degree $n$ polynomial in $\phi$ annihiliting each $x_j$, hence annihilating every element in $M$. The leading term in $\phi$ is $\phi^n$ and all other coefficients involve $a_{ij}$'s, hence lie in $I$. \end{proof} \subsubsection*{Integrality} \begin{flashcard}[integral-element-defn] \begin{definition*}[Integral element] \glsadjdefn{intel}{integral}{element} \cloze{Let $A \subseteq B$ be integral domains. An element $b \in B$ is \emph{integral} over $A$ if $f(b) = 0$ for a \emph{monic} polynomial $f(X) \in A[X]$. (recall that monic means that the leading coefficient is $1$).} \end{definition*} \end{flashcard} \begin{flashcard}[intel-iff-subring-containing-Ab-prop] \begin{proposition*} $b \in B$ \gls{intel} over $A$ if and only if there is a subring $C \subseteq B$ containing $A[b]$ with $C$ a finitely generated $A$-module. \end{proposition*} \begin{proof} \phantom{} \begin{enumerate} \item[$\Rightarrow$] \cloze{Suppose $b^n + a_1 b^{n - 1} + \cdots + a_n = 0$. Then since $A[b]$ is generated as an $A$-module by $1, b, b^2, b^2, \ldots$. It is also generated by $1, \ldots, b^{n - 1}$. So $A[b]$ is ginitely generated, and can take $C = A[b]$.} \item[$\Leftarrow$] \cloze{If $C$ is finitely generated, let $\phi : C \to C$ be given by $\phi(x) = b \cdot x$. Apply the above Lemma to the finitely generated $A$-module $C$ with $I = A$. We get $\phi^n + a_1 \phi^{n - 1} \cdots + a_n \equiv 0$ or $b^n + a_1 b^{n - 1} + \cdots + a_n$, acting by multiplication on $C$, is the zero map. Since $C$ is an integral domain, we have \[ b^n + a_1 b^{n - 1} + \cdots + a_n = 0 \qedhere \]} \end{enumerate} \end{proof} \end{flashcard}