%! TEX root = AG.tex % vim: tw=50 % 29/01/2024 12PM \textbf{Exercise:} Check that this gives a $1-1$ correspondence. We checked \[ \sh f \mapsto f \mapsto \sh f ,\] so it remains to check that \[ f \mapsto \sh f \mapsto f .\] \begin{moral*} A \gls{morph} $f : \AA^n \supseteq X \to Y \subseteq \AA^m$ is given by choosing polynomial functions $f_1, \ldots, f_m \in \KK[X_1, \ldots, X_n]$ and defining $f$ by \[ f(p) = (f_1(p), \ldots, f_m(p)) .\] \end{moral*} \begin{example*} \begin{align*} f : \AA^1 &\to \AA^2 \\ t &\mapsto (t, t^2) \end{align*} The image of this map is $Y = \Z(X^2 - Y)$. This defines a \gls{morph} $f : \AA^1 \to Y$. Then \begin{align*} \sh f : \frac{\KK[X, Y]}{(Y - X^2)} &\to \KK[t] \\ X &\mapsto t \\ Y &\mapsto t^2 \end{align*} This is an isomorphism! \end{example*} \begin{flashcard}[isomorphic-affvty] \begin{definition*}[Isomorphism of affine varieties] \glsadjdefn{affvtyisic}{isomorphic}{\gls{affvty}} \glsnoundefn{isism}{isomorphism}{isomorphisms} \cloze{Two \glspl{affvty} are \emph{isomorphic} if there exist \glspl{morph} $f : X \to Y$, $g : Y \to X$ such that $g \circ f = \id_X$, $f \circ g = \id_Y$.} \end{definition*} \end{flashcard} \begin{flashcard}[affvty-isomorphic-iff-thm] \begin{theorem*} If $X, Y$ are \glspl{affvty}, then $X$ is \gls{affvtyisic} to $Y$ if and only if \cloze{$\cring A(X) \cong \cring A(Y)$ as \Kalgebra{\KK}.} \end{theorem*} \end{flashcard} \begin{example*} $\AA^1 \cong \Z(X^2 - Y) \subseteq \AA^2$. \end{example*} \begin{remark*} A \Kalgebra{\KK} $\AA$ is \emph{finitely generated} if there exists a surjective \Kalgebra{\KK} homomorphism \begin{align*} \KK[X_1, \ldots, X_n] &\to \AA \\ X_i &\mapsto a_i \end{align*} i.e. every element of $\polyA$ can be written as a polynomial in $a_1, \ldots, a_n$ with coefficients in $\KK$. If $I$ is the kernel of this map then \[ \polyA \cong \KK[X_1, \ldots, X_n] / I .\] SUppose further that $\polyA$ is an integral domain. Then $I$ is a prime ideal of $\KK[X_1, \ldots, X_n]$, so \[ A = \cring A(X) \] where $X = \Z(I)$. \end{remark*} \newpage \section{The proof of Hilbert's Nullstellensatz} \textbf{Goal:} We want to prove \nameref{hilbert_null}. That is, if $\KK$ is algebraically closed, we want to show $\I(\Z(I)) = \sqrtideal{I}$. \begin{flashcard}[transcendental-over-K-defn] \begin{definition*}[Transcendental] \glsadjdefn{transc}{transcendental}{element} \cloze{Let $F / \KK$ be a field extension. We say an element $z \in F$ is \emph{transcendental} over $\KK$ if it is not algebraic, i.e. $\nexists f \in \KK[X]$ with $f \neq 0$, $f(z) = 0$.} \end{definition*} \end{flashcard} \begin{flashcard}[alg-indep-defn] \begin{definition*}[Algebraically independent elements] \glsadjdefn{algindep}{algebraically independent}{elements} \cloze{We say $z_1, \ldots, z_d \in F$ are \emph{algebraically independent over $\KK$} if $\nexists f \in \KK[X_1, \ldots, X_d]$ with $f \neq 0$, $f(z_1, \ldots, z_d) = 0$.} \end{definition*} \end{flashcard} \begin{flashcard}[transcendence-basis-defn] \begin{definition*}[Transcendence basis] \glsnoundefn{transc_basis}{transcendence basis}{transcendence bases} \cloze{A \emph{transcendence basis} for $F / \KK$ is a set $z_1, \ldots, z_d \in F$ \gls{algindep} over $\KK$ and such that $F$ is algebraic over $\KK(z_1, \ldots, z_d)$.} \end{definition*} \end{flashcard} \begin{example*} If $X$ is a \gls{aavty}, $\K(X)$ is a field extension of $\KK$, and it usually has lots of \glsref[transc]{transcendentals}. \begin{align*} \K(\AA^n) &= \left\{ \frac{f}{g} \st f, g \in \KK[X_1, \ldots, X_n], g \neq 0 \right\} / \sim \\ &= \KK(X_1, \ldots, X_n) \\ &= \text{field of rational functions in $X_1, \ldots, X_n$} \end{align*} $X_1, \ldots, X_n$ form a \gls{transc_basis}. \end{example*} \begin{flashcard}[finitely-generated-field-extension] \begin{definition*}[Finitely generated field extension] \glsadjdefn{fgfe}{finitely generated}{field extension} \cloze{If $F / \KK$ is a field extension, we say $F$ is \emph{finitely generated} over $\KK$ if $F = \KK(z_1, \ldots, z_n)$ for some $z_1, \ldots, z_n \in F$.} \end{definition*} \end{flashcard} \begin{example*} $\K(X) / \KK$ is finitely generated. If $X \subseteq \AA^n$, then $\K(X)$ is the fraction field of $\cring A(X) = \KK[X_1, \ldots, X_n] / I$ and hence $K(X)$ is generated by the images of $X_1, \ldots, X_n$. \end{example*} \begin{flashcard}[fgfe-has-transc-basis-prop] \begin{proposition*} Every \gls{fgfe} field extension $F / \KK$ has a \gls{transc_basis}, and any two \glspl{transc_basis} have the same number of elements. Further, if $F = \KK(z_1, \ldots, z_N)$, then there is a \gls{transc_basis} $\{Y_1, \ldots, Y_n\} \subseteq \{z_1, \ldots, z_N\}$. \end{proposition*} \begin{proof} \cloze{Write $F = \KK(z_1, \ldots, z_N)$. If $z_1, \ldots, z_n$ are \gls{algindep}, then $z_1, \ldots, z_n$ is a \gls{transc_basis}. If $z_1, \ldots, z_N$ are algebraic over $\KK$, then the \gls{transc_basis} can be taken to be empty. Otherwise, assume $\{z_1, \ldots, z_d\}$ is a maximal subset of algebraically independent elements of $\{z_1, \ldots, z_n\}$. I claim $z_1, \ldots, z_d$ is a \gls{transc_basis}, i.e. $F$ is algebraic over $\KK(z_1, \ldots, z_d)$. It is neough to show $z_j$ is algebraic of $\KK(z_1, \ldots, z_d)$ for any $j > d$. By assumption, $z_1, \ldots, z_d, z_j$ are \emph{not} algebraically independent, i.e. there exists $f_j \in \KK[X_1, \ldots, X_d, X_j]$ such that $f_j(z_1, \ldots, z_d, z_j) = 0$. Write $f_j = \sum_I f_{ji}(X_1, \ldots, X_d) X_j^i$. Then \[ 0 \neq f_j(z_1, \ldots, z_d, X) = \sum_i f_{ji}(z_1, \ldots,z_d) X^i \in \KK(z_1, \ldots, z_d)[X] \] (the polynomial is non-zero since $z_1, \ldots, z_d$ are \gls{algindep}). Then since $f_j(z_1, \ldots, z_d, z_j) = 0$, we have $z_j$ algebraic over $\KK(z_1, \ldots, z_d)$. Thus $f$ is algebraic over $\KK(z_1, \ldots, z_d)$, so $z_1, \ldots, z_d$ is a \gls{transc_basis}. Now suppose $z_1, \ldots, z_d$ and $w_1, \ldots, w_e$ are both \glspl{transc_basis}. Suppose $d \le e$. First $w_1$ is algebraic over $\KK(z_1, \ldots, z_d)$ since $w_1 \in F$. Then there exists a polynomial $f \in \KK[X_1, \ldots, X_d, D_{d + i}]$ such that $f(z_1, \ldots, z_d, w_1) = 0$. This is obtained by clearing denominators of a polynomial $g \in \KK(z_1, \ldots, z_d)[X_{d + 1}]$ with $g(w_1) = 0$. Since $w_1$ is not algebraic over $\KK$, $f$ must involve at least one of $X_1, \ldots, X_d$, say $X_1$. Thus $z_1$ is algebraic. So $z_1$ is algebraic over $\KK(w_1, z_2, \ldots, z_d)$ (as witnessed by $f$). So $F$ is algebraic over $\KK(w_1, z_2, \ldots, z_d)$. Repeat: $w_2$ is algebraic over $\KK(w_1, \ldots, z_2, \ldots, z_d)$ and not algebraic over $\KK(w_1)$. So one can find $0 neq g \in \KK[X_1, \ldots, X_{d + 1}]$ such that $g(w_1, z_2, \ldots, z_d, w_2) = 0$ and further $g$ involves one of $X_2, \ldots, X_d$: say it involves $X_2$. Thus $z_2$ is algebraic over $\KK(w_1, w_2, z_3, \ldots, z_d)$. Continuing, eventually we find $F$ is algebraic over $\KK(w_1, \ldots, w_d)$. But if $e > d$, then $w_e$ is algebraic over $\KK(w_1, \ldots, w_d)$, contradicting $w_1, \ldots, w_e$ being a \gls{transc_basis}.} \end{proof} \end{flashcard}