%! TEX root = AG.tex % vim: tw=50 % 26/01/2024 12PM Reminders: \begin{itemize} \item $X \subseteq \AA^n$. \item $\cring A(X) = \polyA / \I(X)$. \item We defined the notion of \gls{regf} function on an \gls{zzopen} subset $U \subseteq X$. \item $\OX_X(U) \defeq \{f : U \to \KK \st \text{$f$ is \gls{regf} on $U$}\}$ \end{itemize} \begin{lemma*} $\OX_X(X) = \cring A(X)$. \end{lemma*} \begin{proof} Later (we will prove this after proving \nameref{hilbert_null}). \end{proof} Recall from \courseref{GRM}: Let $A$ be an integral domain. Then the \emph{field of fractions} of $A$ (or \emph{fraction field} of $A$) is \[ \left\{\frac{f}{g} \st f, g \in A, g \neq 0\right\} / \sim \] with $\frac{f}{g} \sim \frac{f'}{g'}$ if $fg' = f'g$. We define addition and multiplication using: \[ \frac{f}{g} + \frac{f'}{g'} = \frac{fg' + gf'}{gg'} \qquad \frac{f}{g} \frac{f'}{g'} = \frac{ff'}{gg'} \] and we observe that this is a field since \[ \left( \frac{f}{g} \right)^{-1} = \frac{g}{f} \] is an inverse whenever $f \neq 0$. \begin{remark*} If $X \subseteq \AA^n$ is an \gls{affvty}, then $\cring A(X) = \polyA / \I(X)$ is an integral domain. (This is because for any ring $R$ and ideal $P \subseteq R$, $R / P$ is an integral domain if and only if $P$ is prime -- see \courseref{GRM}). \end{remark*} \begin{flashcard}[function-field-defn] \begin{definition*}[Function field] \glssymboldefn{KX}{$K(X)$}{$K(X)$} \glsnoundefn{funcfield}{function field}{function fields} \cloze{If $X \subseteq \AA^n$ is a \gls{aavty}, its \emph{function field} is $K(X)$, the fraction field of $\cring A(X)$. Elements of $K(X)$ are called \emph{rational functions} on $X$. Note $\frac{g}{h} \in K(X)$ induces a \gls{regf} function on $X \setminus \Z(h)$.} \end{definition*} \end{flashcard} \subsection{Morphisms} \begin{flashcard}[morphism-defn] \begin{definition*}[Morphism] \glsnoundefn{morph}{morphism}{morphisms} \cloze{A map $f : X \to Y$ between \glspl{affvty} is called a \emph{morphism} if: \begin{enumerate}[(1)] \item $f$ is continuous in the induced \glsref[zopen]{Zariski topology} on $X$ and $Y$ ($Z \subseteq X \subseteq \AA^n$ is closed in $X$ if and only if it is closed in $\AA^n$). \item $\forall V \subseteq Y$ be an open subset, $\varphi : V \to \KK$ a \gls{regf} function, we have that $\varphi \circ f : f^{-1}(V) \to \KK$ is a \gls{regf} function on $f^{-1}(V)$. \end{enumerate}} \end{definition*} \end{flashcard} \glssymboldefn{sh}{$f^\#$}{$f^\#$} \textbf{Observation:} Let $f : X \to Y$ be a \gls{morph}. Then for any $\varphi \in \cring A(Y)$, we get $\varphi \circ f : X \to \KK$ a \gls{regf} function. Assuming $\KK$ is algebraically closed, $\OX_X(X) = \cring A(X)$, so $\varphi \circ f \in \cring A(X)$. This gives a map $\sh f : \cring A(Y) \to \cring A(X)$. This is a \Kalgebra{\KK} homomorphism. We first check that it is indeed a ring homomorphism: \begin{align*} \sh f(\varphi_1 + \varphi_2) &= (\varphi_1 + \varphi_2) \circ f \\ &= \varphi_1 \circ f + \varphi_2 \circ f \\ &= \sh f(\varphi_1) + \sh f(\varphi_2) \\ \sh f(\varphi_1 \cdot \varphi_2) &= (\varphi \cdot \varphi_2) \circ f \\ &= (\varphi_1 \circ f) \cdot (\varphi_2 \circ f) \\ &= \sh f(\varphi_1) \cdot \sh f(\varphi_2) \\ \sh f(1) &= 1 \end{align*} Now we check multiplication by elements of $\KK$. For $a \in \KK$, \[ \sh f(a \cdot \varphi) = a \cdot \sh f(\varphi) \] So this is a \Kalgebra{\KK} homomorphism. \begin{flashcard}[sharp-bijection-thm] \begin{theorem*} For $\KK$ algebraically closed, there is a $1-1$ correspondence between \glspl{morph} $f : X \to Y$ and \Kalgebra{\KK} homomorphisms $\sh f : \cring A(Y) \to \cring A(X)$. \end{theorem*} \begin{proof} \cloze{We have already constructed $\sh f$ from $f$. Suppose $X \subseteq \AA^n$, $Y \subseteq \AA^m$. Then \[ \cring A(X) = \frac{\KK[X_1, \ldots, X_n]}{\I(X)} \qquad \cring A(Y) = \frac{\KK[Y_1, \ldots, Y_m]}{\I(Y)} \] \[ \AA^n \supseteq X \stackrel[f]{(f_1, \ldots, f_m)}{\longrightarrow} Y \subseteq \AA^m \stackrel[y_i]{}{\to} \KK \] $f_i = y_i \circ f$. Suppose given $\sh f : \cring A(Y) \to \cring A(X)$. Set $f_i = \sh f(\ol{y}_i)$ ($\ol{y}_i$ is the image of $y_i$ in $\cring A(Y)$). We now define $f : X \to \AA^m$ by $f(p) = (f_1(p), \ldots, f_m(p))$. \textbf{Claim:} $f(X) \subseteq Y$. Proof: Let $g \in \I(Y)$, and $p \in X$. We need to show that $g(f(p)) = 0$. This will show $f(p) \in Y$. Consider the map \[ \KK[Y_1, \ldots, Y_m] \to \cring A(Y) \stackrel{\sh f}{\to} \cring A(X) \] \[ Y_i \mapsto \ol{Y_i} \mapsto f_i \] Thus \[ g(Y_1, \ldots, Y_m) \mapsto g(\ol{Y}_1, \ldots, \ol{Y}_m) \mapsto g(f_1, \ldots, f_m) \] The right arrow uses $\sh f$ being a \Kalgebra{\KK}. The middle expression is the image of $g$ under quotient map, hence $0$ since $g \in \I(Y)$. Thus $g(f(p)) = g(f_1, \ldots, f_m)(p) = 0$. Thus $f(X) \subseteq Y$. This completes the proof of the claim. Note: If $\varphi \in \cring A(Y)$, can write $\varphi = g(\ol{Y}_1, \ldots, \ol{Y}_m)$ and $\sh f(\varphi) = g(f_1, \ldots, f_m) = \varphi \circ f$. \textbf{Claim:} $f$ is a \gls{morph}: \begin{enumerate}[(1)] \item \textit{$f$ is continuous:} We will show $f^{-1}(Z)$ is \gls{zzclosed} for $Z \subseteq Y$ \gls{zzclosed}. Note $\I(Z) \supseteq \I(Y)$, so $\ol{\I(Z)} = \frac{\I(Z)}{\I(Y)} \subseteq \cring A(Y)$ is an ideal in $\cring A(Y)$. Then define \[ Z(\sh f(\ol{\I(Z)})) = \{p \in X \st \varphi(p) = 0 ~\forall \varphi \in \sh f(\ol{\I(Z)})\} \] This is a \gls{zzclosed} subset of $X$ since it coincides with \[ \Z(\pi_X^{-1}(\sh f(\ol{\I(Z)}))) \] where $\pi_X : \KK[X_1, \ldots, X_n] \to \cring A(X)$. But \begin{align*} \Z(\sh f(\ol{I(Z)})) &= \{p \in X \st \psi \circ f = 0 ~\forall \psi \in \ol{\I(Z)}\} \\ &= \{p \in X \st f(p) \in Z\} \\ &= f^{-1}(Z) \end{align*} Thus $f^{-1}(Z)$ is \gls{zzclosed}. \item Let $U \subseteq Y$ be an \gls{zzopen} subset, $\varphi \in \OX_Y(U)$. We need to show $\varphi \circ f : f^{-1}(U) \to \KK$ is \gls{regf}. Let $p \in f^{-1}(U)$, and let $V \subseteq U$ be an \gls{zzopen} neighbourhood of $f(p)$ for which we can write $f = \frac{g}{h}$, $g, h \in \cring A(Y)$, $h$ nowhere vanishing on $V$. Then \[ \varphi \circ f|_{f^{-1}(V)} = \frac{g \circ f}{h \circ f} = \frac{\sh f(g)}{\sh f (h)} .\] Now $\sh f(g), \sh f(h)$ lie in $\cring A(X)$, and $\sh f(h) = h \circ f$ doesn't vanish on $f^{-1}(V)$. Thus $\varphi \circ f$ is \gls{regf}. \qedhere \end{enumerate} } \end{proof} \end{flashcard}