%! TEX root = AG.tex % vim: tw=50 % 24/01/2024 12PM \begin{flashcard}[irred-iff-prime-prop] \begin{proposition*} Let $\KK$ be algebraically closed. Then an \gls{algset} set $X \subseteq \AA^n$ is \gls{irredsub} if and only if $\I(X)$ is prime. \end{proposition*} \begin{proof} \phantom{} \begin{enumerate} \item[$\Rightarrow$] \cloze{If $f \cdot g \in \I(X)$, then $X \subseteq \Z(f \cdot g) = \Z(f) \cup \Z(g)$. Thus \[ X = (X \cap \Z(f)) \cup (X \cap \Z(f)) \] By \glsref[irredsub]{irreducibility} of $X$ we can assume $X = X \cap \Z(f)$, so $X \subseteq \Z(f)$, so $f \in \I(X)$.} \item[$\Leftarrow$] \cloze{If $P \subseteq \polyA = \KK[X_1, \ldots, X_n]$ is prime, suppose $\Z(P) = X_1 \cup X_2$ with $X_1, X_2$ closed. Then \[ \I(X_1) \cap \I(X_2) = \I(X_1 \cup X_2) = \I(\Z(P)) = \sqrtideal{P} .\] The last equality is by \nameref{hilbert_null}. But $\sqrtideal{P} = P$: if $f^n \in P$ then $f \in P$ by primality of $P$. Thus $\I(X_1) \cap \I(X_2) = P$, so by the lemma, $P = \I(X_1)$ or $P = \I(X_2)$. Thus $\Z(P) = X_1$ or $\Z(P) = X_2$. Thus $\Z(P)$ is \gls{irredsub} and $\I(\Z(P)) = P$. \qedhere} \end{enumerate} \end{proof} \end{flashcard} We now have a $1-1$ correspondence (if $\KK$ is algebraically closed): \begin{center} \includegraphics[width=0.6\linewidth]{images/680df3b05ae442d5.png} \end{center} \begin{flashcard}[algset-union-of-finite-varieties] \begin{proposition*} Any \gls{algset} set in $\AA^n$ can be written as a finite union of \glspl{aavty}. \end{proposition*} \begin{proof} \cloze{Let $\mathcal{R}$ be the set of all \gls{algset} sets in $\AA^n$ which can't be written as a finite union of \glspl{aavty}. If $\mathcal{R} \neq \emptyset$, I claim it has a minimal element. Otherwise there exists $X_1, X_2, X_3, \ldots \in \mathcal{R}$ with \[ X_1 \supsetneq X_2 \supsetneq X_3 \supsetneq \cdots \] so \[ \I(X_1) \subsetneq \I(X_2) \subsetneq I(X_3) \subsetneq \cdots \subseteq \polyA = \KK[X_1, \ldots, X_n] \] This contradicts $\polyA$ being Noetherian (\courseref{GRM}). Let $X \in \mathcal{R}$ be minimal. $X$ can't be \gls{irredsub}, since then $X$ is itself a \gls{aavty}. Otherwise, we can write $X = X_1 \cup X_2$ with $X_1 \subsetneq X$, $X_2 \subsetneq X$ with $X_1, X_2$ \gls{algset}. Then $X_1, X_2 \notin \mathcal{R}$, hence can be written as a union of \gls{irredsub} sets. So $X$ can also be written as a finite union of \glsref[irredsub]{irreducibles}, so $X \notin \mathcal{R}$, contradiction.} \end{proof} \end{flashcard} \begin{flashcard}[irred-comps-defn] \begin{definition*}[Irreducible components] \glsnoundefn{irredcomp}{irreducible components}{irreducible components} \cloze{If $X = X_1 \cup \cdots \cup X_n$ with $X$, $X_i$ \gls{algset}, $X_i$ \gls{irredsub} and $X_i \not\subseteq X_j$ for any $i \neq j$, then we say $X_1, \ldots, X_n$ are the \emph{irreducible components} of $X$.} \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item In $\AA^2$, $\polyA = \KK[X_1, X_2]$, $X = \ZZ(X_1 \cdot X_2) = \Z(X_1) \cup \Z(X_2)$. \item More generally, $\polyA = \KK[X_1, \ldots, X_n]$ is a UFD. If $0 \neq f \in \polyA$, we can write $f = \prod f_i^{a_i}$ with $f_i$ \gls{irredsub}. Since $\polyA$ is a UFD, $\langle f_i \rangle$ is prime. Thus $\Z(f_i)$ is \gls{irredsub} (assuming $\KK$ is algebraically closed). Thus $\Z(f) = \Z(f_1) \cup \cdots \cup \Z(f_s)$ is the \glsref[irredcomp]{irreducible decomposition} of $\Z(f)$. \item $\Z(X_2^2 - X_1^3 + X_1)$ is \gls{irredsub}. \end{enumerate} \end{example*} \subsection{Regular and rational functions} In Algebraic Geometry, polynomial functions are natural. Let $X \subseteq \AA^n$ be an \gls{algset} set. $f \in \polyA = \KK[X_1, \ldots, X_n]$. This gives a function $f : \AA^n \to \KK$, $(a_1, \ldots, a_n) \mapsto f(a_1, \ldots, a_n) \in \KK$. Then get $f|_X : X \to \KK$. If $f, g \in \polyA$, and $f|_X = g|_X$, then $f \cdot $ vanishes on $X$. So $f \cdot g \in \I(X)$. So it is natural to think of $\polyA / \I(X)$ as being the set of polynomial functions on $X$. \begin{flashcard}[coordinate-ring-defn] \begin{definition*}[Coordinate ring] \glsnoundefn{coordring}{coordinate ring}{coordinate rings} \glssymboldefn{cring}{$A(X)$}{$A(X)$}\ \cloze{Let $X \subseteq \AA^n$ be an \gls{algset} set. The \emph{coordinate ring} of $X$ is \[ \polyA(X) \defeq \polyA / \I(X) \] (sometimes written $\KK[X]$).} \end{definition*} \end{flashcard} \begin{flashcard}[regular-func-defn] \begin{definition*}[Regular function] \glsadjdefn{regf}{regular}{function}% \cloze{Let $X \subseteq \AA^n$ be an \gls{algset} set, $U \subseteq X$ an \gls{zzopen} subset. A function $f : U \to \KK$ is \emph{regular} if $\forall p \in U$, there exists an \gls{zzopen} neighbourhood $V \subseteq U$ of $p$ and functions $g, h \in \cring A(X)$ with $h(q) \neq 0$ for any $q \in V$ and $f = \frac{g}{h}$ on $V$.} \end{definition*} \end{flashcard} \begin{example*} Any $f \in \cring A(X)$ defines a \gls{regf} on $X$. \end{example*} \begin{flashcard}[Ox-notation] \begin{notation*} \glssymboldefn{OX}{$O_X(U)$}{$O_X(U)$} We write \[ \mathcal{O}_X(U) \defeq \cloze{\{f : U \to \KK \st \text{$f$ is \gls{regf}}\}} .\] \end{notation*} \end{flashcard} \begin{note*} $\OX_X(U)$ is a ring if $f, g \in \OX_X(U)$, then $f \pm g, f \cdot g \in \OX_X(U)$. This is also a \Kalgebra{\KK}. \begin{flashcard}[algebra-defn] \begin{definition*}[Algebra] \glsnoundefn{algebra}{algebra}{algebras} \cloze{If $A$, $B$ are rings, then an $A$-algebra structure on $B$ is the data of a ring homomorphism $\varphi : A \to B$. This turns $B$ into an $A$-module via \[ a \cdot b \defeq \varphi(a) \cdot b \] } \end{definition*} \end{flashcard} So $\KK \to \OX_X(U)$ is given by $a \in \KK$ being mapped to the constant function with value $a$. \end{note*}