%! TEX root = AG.tex % vim: tw=50 % 13/03/2024 12PM \begin{example*} \[ y^2 = (x - \lambda_1)(\lambda_2)(\lambda_3) \] Take $P_0 = (0 : 1 : 0)$. \begin{center} \includegraphics[width=0.6\linewidth]{images/c10f3aee69ff48d4.png} \end{center} \end{example*} \begin{example*} Let $C$ have \gls{genus} $2$. Then $\deg \KC = 2g - 2 = 2$, $l(\KC) = 2$. \textbf{Claim:} $\dbar|\KC|$ is \gls{bpfree}, hence induces a \gls{gmorph} $f : C \to \P^1$. \begin{lemma*} Let $C$ be a projective non-\gls{sing} \gls{curve}. If there exist $P, Q \in C$, $P \neq Q$, $P \sim Q$, then $C \cong \P^1$. \end{lemma*} \begin{proof} Consider the linear system $\dbar|P|$. Since $Q \in \dbar|P|$, $\dim\dbar|P| \ge 1$, so $l(P) \ge 2$. But we have an upper bound $\dim\LD(D) \le \deg D + 1 \le 2$. Thus $l(P) = 2$. If $Q, R \in C$ then $\dim\LD(P - Q - R) = 0$ since $\deg(P - Q - R) = 1$. Thus $\dbar|P|$ induces an embedding of $C$ into $\P^1$. So $C \cong \P^1$. \end{proof} \begin{proof}[Proof of Claim] If $\dbar|\KC|$ is not \gls{bpfree}, then there exists $P \in C$ such that $l(\KC - P) = l(\KC) = 2$. Since $\deg \KC - P = 1$, this means there exists $Q, R \in \dbar|\KC - P|$, $Q \neq R$, with $Q \sim R$. Hence $C \cong \P^1$, contradiction, since $\P^1$ has \gls{genus} $0$. \end{proof} Thus if $g = 2$, we obtain a degree $2$ \gls{gmorph} $f : C \to \P^1$ induces by $\dbar|\KC|$. \end{example*} \begin{flashcard}[hyper-elliptic-defn] \begin{definition*}[Hyperelliptic] \glsadjdefn{hypell}{hyperelliptic}{\gls{curve}} \cloze{A projective non-\gls{sing} \gls{curve} $C$ is \emph{hyperelliptic} if there exists a degree $2$ \gls{gmorph} $f : C \to \P^1$.} \end{definition*} \end{flashcard} \vspace{-1em} Thus all \gls{genus} 2 \glspl{curve} are \gls{hypell}. \begin{theorem*} Let $C$ be a projective non-\gls{sing} \gls{curve} of \gls{genus} $g \ge 3$. Then either: \begin{enumerate}[(1)] \item $C$ is \gls{hypell}, or \item $\dbar|\KC|$ induces an embedding $C \hookrightarrow \P^{g - 1}$. \end{enumerate} \end{theorem*} \begin{proof} $\dbar|\KC|$ induces an embedding in $\P^{l(\KC) - 1} = \P^{g - 1}$ if and only if $\forall P, Q \in C$, \[ l(\KC - P - Q) = l(\KC) - 2 = g - 2 .\] In any event, \[ l(P + Q) - l(\KC - P - Q) = \deg(P + Q) + 1 - g = 3 - g .\] Thus $\dbar|\KC|$ induces an embedding if and only if $l(P + Q) = 1$ for all $P, Q \in C$. Now suppose $\dbar|\KC|$ does not induce an embedding. Then there exist $P, Q \in C$ such that $l(P + Q) > 1$. If $l(P + Q) \ge 3$, then for $R \in C$, $l(P + Q - R) \ge 2$. So there exists $P_1, P_2 \in \dbar|P + Q - R|$ distinct. Thus $C \cong \P^1$ by the lemma, a contradiction. Thus $l(P + Q) = 2$. Note similarly $l(P + Q - R) = 1$ for all $R \in C$. Thus $\dbar|P + Q|$ is \gls{bpfree} and induces a degree $2$ \gls{gmorph} $f : C \to \P^1$. So $C$ is \gls{hypell}. \end{proof} \begin{theorem*}[Riemann-Hurwitz formula] Let $f : X \to Y$ be a non-constant \gls{gmorph} between projective non-\gls{sing} \glspl{curve}, with $\characteristic \KK = 0$ (or $\K(Y) \subseteq \K(X)$ is a separable field extension). Then \[ 2 - 2g(X) = (\deg f)(2 - 2g(Y)) - \sum_{p \in X} (e_p - 1) .\] ($e_p = \nu_p(t \cdot f)$ where $t$ is a local parameter at $f(p)$). \end{theorem*} \begin{proof} Omitted. \end{proof} \begin{example*} $X = C$ \gls{hypell}, $Y = \P^1$, $Y = \P^1$, $f : C \to \P^1$ degree 2. Then \[ 2 - 2g(C) = \ub{2 \cdot (2 - 2 \cdot 0)}_{4} - \sum_{p \in C} (e_p - 1) .\] Thus the number number of points $p \in C$ with $e_p > 1$ is $\sum_p (e_p - 1) = 2g(C) + 2$, $\deg g = \sum_{p \in f^{-1}(q)} e_p$. \begin{center} \includegraphics[width=0.6\linewidth]{images/98e2dbb8d2f7489e.png} \end{center} \end{example*}