%! TEX root = AG.tex % vim: tw=50 % 11/03/2024 12PM \begin{flashcard}[div-class-rOmega-well-def-prop] \begin{proposition*} Let $\omega, \omega' \in \rOmega_{\K(C) / \KK}$. Then $\rdiv(\omega)$ and $\rdiv(\omega')$ are \gls{linequiv}. \end{proposition*} \begin{proof} \cloze{For $t$ a local parameter at some point $p \in C$, $\omega = f \dd t$, $\omega' = f' \dd t$, then $\omega = \frac{f'}{f} \cdot \omega'$. Then \[ \rdiv(\omega) = \rdiv(\omega') + \left( \frac{f'}{f} \right) . \qedhere \]} \end{proof} \end{flashcard} \begin{flashcard}[canonical-class-defn] \begin{definition*}[Canonical class] \glsnoundefn{cancls}{canonical class}{canonical classes} \glssymboldefn{KC}{$K_C$}{$K_C$} \cloze{The \emph{canonical class} of a projective non-\gls{sing} \gls{curve} $C$ is the linear equivalence class of $\rdiv \omega$ in $\Cl C$, for any $0 \neq \omega \in \rOmega_{\K(C) / \KK}$. We write the canonical class as $K_C$.} \end{definition*} \end{flashcard} \begin{flashcard}[genus-defn] \begin{definition*}[Genus] \glsadjdefn{genus}{genus}{\gls{curve}} \cloze{The \emph{genus} of $C$ is $\dim_{\KK} \LD(\KC)$. If $\KK = \CC$ and we use the Euclidean topology rather than the Zariski topology, then this is the usual notion of genus!} \end{definition*} \end{flashcard} \begin{example*} $C = \P^1$, $\K(C) = \KK(t)$, $t = x_0 / x_1$. Note when $x_1 = 1$, $t = p_0$ is a local parameter for $C$ at $p_0 = (p_0 : 1) \in \P^1$. Thus $\dd t = \dd (t - p_0)$ and $\nu_{p_0} (\dd (t - p_0)) = 0$. Thus $\nu_{p_0}(\dd t) = 0$ for all $p_0 \in \P^1 \setminus \Z(x_i)$. At $t = \infty$, look at $\AA^1 = \P^1 \setminus \Z(x_0)$, so $s = x_1 / x_0$ is a local parameter at $q = (1 : 0)$. Note $t = s^{-1}$, so \[ \dd t = \dd (1 / s) = -\frac{\dd s}{s^2} \] so $\nu_q(\dd t) = -2$. So $\KC \sim -2q$ where $\sim$ means \gls{linequiv}. Thus $\LD(\KC) = \LD(-2q) = 0$. Thus \[ g(C) = \dim \LD(\KC) = 0 .\] \end{example*} \begin{example*} Plane cubic \[ y^2 = (x - \lambda_1)(x - \lambda_2)(x - \lambda_3) \] in $\AA^2$ or \[ y^2z = (x - \lambda_1 z)(x - \lambda_2 z)(x - \lambda_3 z) \] $\lambda_1, \lambda_2, \lambda_3 \in \KK$ distinct. $\omega = \frac{\dd x}{y}$, $2y \dd y = f'(x) \dd x$. \begin{center} \includegraphics[width=0.6\linewidth]{images/fc1c52e4078a4166.png} \end{center} so \[ \frac{2 \dd y}{f'(x)} = \frac{\dd x}{y} .\] In fact, $\rdiv(\omega) = 0$. Hardest part: $q = (0 : 1 : 0)$. Thus $\KC \sim 0$, and $\LD(\KC) = \LD(0)$, so $g(C) = \dim \LD(0) = 1$. \end{example*} \begin{flashcard}[riemann-roch-thm] \begin{theorem*}[Riemann-Roch Theorem] \label{rroch} \cloze{Write $l(D) \defeq \dim_{\KK} \LD(D)$ for $D \in \Div(C)$. Then \[ l(D) - l(\KC - D) = \deg D + 1 - g \] where $g$ is the genus of $C$.} \end{theorem*} \end{flashcard} \begin{proof} Omitted. This is far beyond the scope of this course; this theorem is not even proved in part III. \end{proof} Consequences: \begin{enumerate}[(1)] \item If $D = 0$ then $l(D) = 1$, so $1 - l(\KC) = 0 + 1 - g$ or $l(\KC) = g$, the definition of $g$. \item If $D = \KC$, then \[ \ub{l(\KC) - l(0)}_{= g - 1} = \deg \KC + 1 - g \] so $\boxed{\deg \KC = 2g - 2}$. \item If $\deg D > 2g - 2$, then $\deg \KC - D = 2g - 2 - \deg D , 0$. Thus $l(\KC - D) = 0$ and \[ \boxed{l(D) = \deg D + 1 - g} .\] \begin{remark*} \vspace{1em} For $0 \le \deg D \le 2g - 2$, behaviour of $l(D)$ can be complicated and unpredictable. \end{remark*} \item If $\deg D > 2g$, then $\forall P, Q \in C$, \[ l(D - P - Q) = l(D) - 2 \] by (3). Hence $\dbar|D|$ induces an embedding of $C$ in some $\P^n$. \begin{example*} \vspace{1em} If $C$ has genus $0$, then every positive degree \gls{div} induces an embedding. For example, if $P \in C$, $\dbar|P|$ is \gls{va}, $l(P) = 2$, so we get an embedding of $C$ in $\P^1$. Thus $C \cong \P^1$. \end{example*} \begin{example*} \vspace{1em} $g = 1$. If $\deg D = 3$, then $D$ is \gls{va}, and $l(D) = 3 + 1 - 1 = 3$. So $\dbar|D|$ induces an embedding of $C$ in $\P^2$. Thus in particular $C$ is isomorphic to a \gls{curve} of degree $3$ in $\P^2$. Can show $C \cong \Z(f)$ for some homogeneous polynomial of degree $3$. More specifically, fix $P_0 \in C$, and embed using $\dbar|3P_0|$. Let $D \in \Div C$ be degree $0$. Then \[ l(D + P_0) - l(\KC - D - P_0) = \deg(D + P_0) + 1 - g .\] The second term of RHS is $0$ since $\deg \KC - D - P_0 = -1$. Then since $\deg(D + P_0) = 1$ and $g = 1$, we get $l(D + P_0) = 1$. So there exists an \gls{eff} \gls{div} \gls{linequiv} to $D + P_0$, necessarily $D + P_0 \sim P$ for some $P \in C$. Thus $P - P_0 \sim D$. Note $P$ is unique: if $P - P_0 \sim P' - P_0$, then $P \sim P'$, so if $P \neq P'$, $\dim\dbar|P| \ge 1$, so $l(P) \ge 2$. But $l(P) = 1$ by \nameref{rroch}. Conclusion: every divisor class on $C$ of degree $0$ can be represented uniquely by $P - P_0$ for some $P \in C$, i.e. $C \to \Ker(\deg : \Cl C \to \ZZ))$, $p \mapsto p - p_0$ is a bijection. This gives a group structure on $C$, i.e. $P + Q = R$ for $P, Q, R \in C$ if \[ (P - P_0) + (Q - P_0) \sim R - P_0 .\] Geometric description: $P, Q \in C \stackrel{i}{\hookrightarrow} \P^2$. Let $L$ be the line joining $P$ and $Q$ (tangent line to $C$ at $P$ if $P = Q$). Then \[ \text{``}L \cap C\text{''} = \fstar i L = P + Q + S .\] (possibly $S = P$ or $S = Q$). Now $P + Q + S \sim 3P_0$, or \[ (P - P_0) + (Q - P_0) + (S - P_0) \sim 0 .\] Next let $L'$ be the line joining $S$ with $P_0$. Then \[ \text{``}L' \cap C\text{''} = \fstar i L' = S + P_0 + R \sim 3P_0 .\] So $(S - P_0) + (R - P_0) \sim 0$ or $(S - P_0) \sim -(R - P_0)$. Thus \[ (P - P_0) + (Q - P_0) \sim (R - P_0) \] so $P + Q = R$. \end{example*} \end{enumerate}