%! TEX root = AG.tex % vim: tw=50 % 08/03/2024 12PM \begin{example*} $\rOmega_{\KK[x] / \KK}$ For $f \in \KK[x]$, $ \dd f = f'(x) \dd x$. Thus $\rOmega_{\KK[x] / \KK}$ is the free $\KK[x]$-module with one generator $\dd x$. Similarly $\rOmega_{\KK(x) / \KK}$, $f \in \KK(x)$, $\dd f = f'(x) \dd x$. Thus $\rOmega_{\KK(x) / \KK}$ is the 1-dimensional vector space over $\KK(x)$ with basis $\dd x$. \end{example*} \begin{flashcard}[Omega-L-K-separable-zero-prop] \begin{proposition*} If $L / K$ is a separable algebraic field extension, then $\rOmega_{L / K} = 0$. \end{proposition*} \fcscrap{ \vspace{-1em} A field extension $L / K$ is separable algebraic if everything in $L$ is a solution to some irreducible polynomial equation $f(x) = 0$ with $f(\alpha) \in K[X]$, and $f'(\alpha) \neq 0$, i.e. $\alpha$ is not a multiple root. } \begin{proof} \cloze{Given $\alpha \in L$, $f(x) \in K[x]$ with $f(\alpha) = 0$, $f'(\alpha) \neq 0$, then $0 = f(\alpha)$ implies $0 = \dd(f(\alpha)) = f'(\alpha) \dd \alpha$, so $\dd \alpha = 0$ since $f'(\alpha) \neq 0$.} \end{proof} \end{flashcard} \begin{flashcard}[Omega-KC-K-dt-lemma] \begin{lemma*} Let $C$ be a \gls{curve}, $p \in C$, and $t$ a local parameter for $C$ at $p$. Then \[ \rOmega_{\K(C) / \KK} = \K(C) \dd t .\] \end{lemma*} \begin{proof} \cloze{$t$ local parameter implies $t$ is not a constant function, and hence defines a non-constant map $t : C \to \P^1$, inducing a finite field extension $\K(\P^1) = \KK(t) \to \K(C)$. This extension is separable (proof omitted, not required if $\characteristic \KK = 0$. The idea is that if the extension is not separable, then $\characteristic \KK \mid e_Q$ for all $Q \in C$. However, since $t$ is a local parameter at $p$, $e_p = 1$). If $\alpha \in \K(C)$, then there exists $f \in \KK(t)[x]$ such that $f(\alpha) = 0$, $f'(\alpha) = 0$. Write \[ f(x) = \sum_{i \ge 0} f_i(t) x^i \] for some $f_(t) \in \KK(t)$. Then \begin{align*} 0 = \dd (f(\alpha)) &= \dd \left( \sum_{i \ge 0} f_i(t) \alpha^i \right) \\ &= \left( \sum_{i \ge 0} f_i'(t) \alpha^i \right) \dd f + \ub{\left( \sum_{i \ge } i f_i(t) \alpha^{i - 1} \right)}_{=f'(\alpha) \neq 0} \dd \alpha \end{align*} Thus we can solve for $\dd \alpha$, getting $\dd \alpha = g \dd t \in \K(C) \dd t$.} \end{proof} \end{flashcard} \begin{flashcard}[order-of-pole-zero-defn] \begin{definition*}[$\nu_p(\omega)$] \glssymboldefn{rdiv}{div$(\omega)$}{div$(\omega)$} \cloze{Let $C$ be a projective non-\gls{sing} \gls{curve}, $\omega \in \rOmega_{\K(C) / \KK}$, $p \in C$. We define $\nu_p(\omega)$ as follows. Let $t \in \OXp_{C, p}$ a local parameter and write $w = f \dd t$ for $f \in \K(C)$. Define \[ \nuf_p(\omega) = \nu_p(f) .\] We define $\rdiv(\omega) = \sum_{p \in C} \nu_p(\omega) p \in \Div C$. We say $\omega$ is regular at $p$ if $\nu_p(\omega) \ge 0$.} \end{definition*} \end{flashcard} \begin{flashcard}[order-pole-well-def-lemma] \begin{lemma*} \phantom{} \begin{enumerate}[(1)] \item $f \in \OXp_{C, p} \implies \nu_p(\dd f) \ge 0$. \item If $t'$ is another local parameter at $p$, then $\nu_p(\dd t') = 0$ and $\nu_p(f \dd t') = \nu_p(f) + \nu_p(\dd t')$ is independent of $t$. \item If $f \in \K(C)$ and $\nu_p(f) \neq 0$ in $\KK$ (i.e., $\characteristic \KK \mid \nuf_p(f)$) then $\nu_p(\dd f) = \nuf_p(f) - 1$. \end{enumerate} \end{lemma*} \begin{proof} \phantom{} \begin{enumerate}[(1)] \item \cloze{Let $p \in C \subseteq \P^n$, $p \in C \cap U_i$, where $U_i = \P^n \setminus \Z(x_i)$. Work on $U_i \cap C$, where rational functions are just ratios of polynomials. If $f = g / h$, $h(p) \neq 0$, we have \[ \dd f = \frac{h \dd g - g \dd h}{h^2} = \sum_i \gamma_i \dd x_i \] with $\gamma_i \in \OXp_{C, p}$. So \[ \nu_p(\dd f) \ge \min\{\nu_p(\gamma_i \dd x_i) \mit 1 \le i \le n\} \ge \min\{\nu_p(\dd x_i) \mid 1 \le i \le n\} .\] Thus $\nu_p(\dd f)$ is bounded below independently of $f$. Choose $f \in \OXp_{C, p}$ such that $\nu_p(\dd f)$ is minimal, $t$ a local parameter at $p \in C$. Then $\nu_p(f - f(p)) \ge 1$, so can write $f - f(p) = t f_1$, for some $f_1 \in \OXp_{C, p}$. So \begin{align*} \dd f &= \dd (f - f(p)) \\ &= \dd (f t_1) \\ &= f_1 \dd t + t \dd f_1 \tag{$*$} \label{lec22_l138_eq} \end{align*} If $\nu_p(\dd f) < 0$, note $\nu_p(f_1 \dd t) \ge 0$, and hence \eqref{lec22_l138_eq} implies \[ \nu_p(\dd f) = \nu_p(t \dd f_i) = \nu_p(t) + \nu_p(\dd f_1) = 1 + \nu_p(\dd f_1) .\] So $\nu_p(\dd f_1) < \nu_p(\dd f)$. This contradicts the minimality of $\nu_p(\dd f)$. Thus $\nu_p(\dd f) \ge 0$.} \item \cloze{We may write $t' = u \cdot t$ for $u$ a unit, $u \in \OXp_{C, p}^\times$ (the group of units). Then $\dd t' = u \dd t + t \dd u$. $\dd u = g \cdot \dd t$ for some $g$ with $\nuf_p(g) \ge 0$ by (1). So \[ \dd t' = \ub{(u + tg)}_{\nu_p = 0} \dd t ,\] so $\nu_p(\dd t') = 0$ by definition. If $f \dd t = h \dd t' = h(u + tg) \dd t$, then \[ \nuf_p(h(u + tg)) = \nuf_p(h) + \nuf_p(u + tg) = \nuf_p(h) .\] Hence $\nu_p$ is independent of choice of $t$.} \item \cloze{Suppose $f = t^n u$ where $n = \nu_p(f)$, $u \in \OXp_{C, p}^\times$. Then $\dd f = nt^{n - 1} u \dd t + t^n \dd u$. If $\characteristic \KK \nmid n$, then \[ \nuf_p(f) \ge \min\{\nuf_p(nt^{n - 1} u \dd t), t^n \dd u\} = \min\{n - 1, n\} = n - 1 \] and equality holds since $n \neq n - 1$. Thus $\nu_p(\dd f) = \nuf_p(f) - 1$.} \qedhere \end{enumerate} \end{proof} \end{flashcard} \begin{proposition*} If $\omega \in \rOmega_{\K(C) / \KK}$, then $\nu_p(\omega) = 0$ for all but a finite number of $p$. \end{proposition*} \begin{proof} Omitted. \end{proof} Thus $\rdiv(\omega) \in \Div(C)$.