%! TEX root = AG.tex % vim: tw=50 % 06/03/2024 12PM \begin{remark*} This is known as B\'ezout's Theorem. This is usually expressed as follows: Let $C, C' \subseteq \P^2$ be \glspl{curve} of degrees $d$ and $e$ respectively. Then the number of points in $C \cap C'$ (assuming $C \neq C'$) ``counted with multiplicities'' is $d \cdot e$. For example, if $C$ is non-\gls{sing}, $f : C \hookrightarrow \P^2$ an embedding, then $d = \deg f$ and $\deg \fstar f C' = d \cdot e$. So if $p \in C \cap C'$, its multiplicity is the coefficient of $p$ in $\fstar f C'$. If $C$ is \gls{sing}, need a more subtle definition of multiplicity. \end{remark*} \vspace{-1em} In general, given a \gls{div} $D$ on a projective non-\gls{sing} \gls{curve} $C$, we would like to understand when $\dbar|D|$ induces an embedding $C$ in projective space. In other words, suppose $\dbar|D|$ is \gls{bpfree}, i.e. $\forall p \in C$, there exists $D' \in \dbar|D|$ with $p \notin \Supp D'$. Then by choosing $f_0, \ldots, f_n \in \LD(D)$ spanning $\LD(D)$, we obtain a \gls{gmorph} $f = (f_ : \cdots : f_n) : C \to \P^n$. When is this an embedding? We can alsu use a sub-linear system $\mathcal{D} = \P(V) \subseteq \dbar|D| = \P(\LD(D))$ and choose $f_0, \ldots, f_n \in V$ a spanning set. \begin{flashcard}[induced-morph-embedding-iff-thm] \begin{theorem*} Suppose a linear system $\mathcal{D} \subseteq \dbar|D|$ is \gls{bpfree}. Then the induced \gls{gmorph} $f : C \to \P^n$ is an embedding if and only if \begin{enumerate}[(1)] \item \cloze{$\mathcal{D}$ separates points: i.e. $\forall P, Q \in C$ distinct, there exists a $D' \in \mathcal{D}$ such that $P \in \Supp D'$ and $Q \notin \Supp D'$. (This is equivalent to injectivity of $f$).} \item \cloze{$\mathcal{D}$ separates vectors: i.e. $\forall P \in C$, $\exists D' \in \mathcal{D}$ such that the coefficient of $P$ in $D'$ is $1$.} \end{enumerate} \end{theorem*} \begin{center} \includegraphics[width=0.6\linewidth]{images/fc7b6a3f146e4002.png} \end{center} \end{flashcard} \begin{flashcard}[very-ample-defn] \begin{definition*}[Very ample divisor] \glsadjdefn{va}{very ample}{\gls{div}} \cloze{We say a \gls{div} $D$ is \emph{very ample} if $\dbar|D|$ induces an embedding into some projective space.} \end{definition*} \end{flashcard} \begin{flashcard}[very-ample-if-thm] \begin{theorem*} $D$ is \gls{va} if \cloze{$\forall P, Q \in C$, not necessarily distinct, we have \[ \dim \dbar|D - P - Q| = \dim \dbar|D| - 2 .\]} \end{theorem*} \begin{proof} \cloze{Recall $\dim\dbar|D| = \dim\LD(D) - 1$. For any $P \in C$, we have a map $\LD(D) \to \KK$. This is constructed as follows. Suppose the coefficient of $P$ in $D$ is $n$. Then if $f \in \LD(D)$, then $\nuf_p(t^n \cdot f) = n + \nuf_p(f) \ge 0$, where $t$ is a local parameter at $p$. So $t^n \cdot f \in \OXp_{C, p}$. Thus we define \begin{align*} ev_p : \LD(D) &\to \KK \\ f &\mapsto (t^n \cdot f)(p) \end{align*} If $f \in \Ker(ev_p)$, we have $\nuf_p(t^n \cdot f) \ge 1$, so $\nuf_p(f) > -n$. Hence the coefficient of $p$ in $D = \divzp(f)$ is at least 1. Thus $(D - p) + \divzp(f)$ is \gls{eff}, so $f \in \LD(D - P)$. Conversely, if $f \in \LD(D - P)$, $(D - P) + \divzp(f)$ is \gls{eff}, so $\nuf_p(f) \ge -n + 1$, so $\nuf_p(t^n \cdot f) \ge 1$, so $f \in \Ker(ev_p)$. Thus $\LD(D - P) = \Ker ev_p$. If $\dbar|D|$ is \gls{bpfree}, then $ev_p : \LD(D) \to \KK$ is surjective $\forall p$ and conversely. So \[ \dim\dbar|D - P| = \dim \LD(D - P) - 1 = \dim \LD(D) - 2 = \dim\dbar|D| - 1 \] for all $p$ if and only if $\dbar|D|$ is \gls{bpfree}. Now $\dbar|D|$ separates points and tangent vectors if and only if $\dbar|D - P|$ is \gls{bpfree} $\forall p \in C$. Indeed, if $D' \in \dbar|D - P|$ does not have $Q$ in its support, then $D' + P$ separatest $P$ and $Q$ if $Q \neq P$. If $P = Q$, and $P \notin \Supp D'$, then $D' + P$ has coefficient 1 for $P$. Now \[ \dim \dbar|D - P - Q| = \dim \dbar|D - P| = 1 \] if and only if $\dbar|D - P|$ is \gls{bpfree} so $\dbar|D|$ is \gls{va} and \gls{bpfree} if and only if \[ \dim\dbar|D - P - Q| = \dim\dbar|D - P| - 1 = \dim\dbar|D| - 2 \qquad \forall P, Q . \qedhere \]} \end{proof} \end{flashcard} \begin{moral*} If we can control $\dim\LD(D)$, then we know a lot about embeddings. \end{moral*} \newpage \section{Differentials and the Riemann-Roch Theorem} \begin{flashcard}[Omega-B-slash-A-defn] \begin{definition*}[$\Omega_{B / A}$] \glssymboldefn{rOmega}{$\Omega_{B / A}$}{$\Omega_{B / A}$} \cloze{Let $B$ be a ring and $A \subseteq B$ a subring. We define \[ \Omega_{B / A} = \frac{\text{free $B$-module generated by symbols $\dd b$ for $b \in B$}}{\text{submodule $R$ of relations}} \] where $R$ is the submodule with generators: \begin{align*} &\dd(bb') - b\dd b' - b'\dd b &&\forall b, b' \in B \\ &\dd(b + b') - \dd b - \dd b' &&\forall b, b' \in B \\ &\dd a &&\forall a \in A \end{align*}} \end{definition*} \end{flashcard}