%! TEX root = AG.tex % vim: tw=50 % 04/03/2024 12PM \begin{flashcard}[fstar-H-formula-thm] \begin{theorem*} $\fstar f H = \cloze{D + \divzp (\sum_i a_i f_i)}$. \end{theorem*} \begin{proof} \cloze{Let $p \in f^{-1}(H)$. Suppose the coefficient of $p$ in $D$ is $0$. Let $\varphi = \sum_i a_i x_i$. Let $b_0, \ldots, b_n$ be such that $p \notin \Z(\sum_i b_i x_i)$. Let $\psi = \sum_i b_i x_i$. Then the coefficient of $p$ in $\fstar f H$ is \[ \nuf_p \left( \frac{\varphi}{\psi} \circ f \right) \] Necessarily, $f_0, \ldots, f_n$ do not have a pole at $p$, since otherwise $D + \divzp(f_i)$ has a negative coefficient for $p$. Thus, $f_0, \ldots, f_n$ are \gls{gregf} on a neighbourhood of $p$, so we can write $f = (f_0 : \ldots : f_n)$ in this neighbourhood. Now \[ \nuf_p \left( \frac{\varphi}{\psi} \circ f \right) = \nuf_p \left( \frac{\sum_i a_i f_i}{\sum_i b_i f_i} \right) = \nuf_p \left( \sum_i a_i f_i \right) \] since $\sum_i b_i f_i$ is non-vanishing and \gls{gregf} at $p$. But $\nuf_p \left( \sum_i a_i f_i \right)$ is the coefficient of $p$ in $D + \left( \sum_i a_i f_i \right)$. If $p$ appears in $D$ with coefficient $m$< then \[ \nuf_p \left( \sum_i b_i f_i \right) \ge -m \] for any $b_0, \ldots, b_n \in \KK$. There is also some choice of $b_0, \ldots, b_n$ with $\nuf_p \left( \sum_i b_i f_i \right) = -m$ by assumption (2). In a neighbourhood of $p$, the \gls{gmorph} $f$ is given by \[ f = (t^m f_0 : \cdots : t^m f_n) \] where $t$ is a local parameter at $p$. The coefficient of $p$ in $\fstar f H$ is \[ \nuf_p \left( \frac{\sum_i a_i t^m f_i}{\ub{\sum_i b_i t^m f_i}_{\nuf_p = 0}} \right) = \nuf_p \left( \sum_i a_i t^m f_i \right) = m + \nuf_p \left( \sum_i a_i f_i \right) ,\] which is the coefficient of $p$ in $D + \divzp (\sum_i a_i f_i)$. Thus $\fstar f H = D + \divzp(\sum_i a_i f_i)$.} \end{proof} \end{flashcard} \vspace{-1em} Picture so far: $f_0, \ldots, f_n$ span a subspace $V \subseteq \LD(D)$. This gives a linear subspace \[ \mathcal{D} = \frac{V \setminus \{0\}}{\KK^1} = \P(V) \subseteq \dbar|D| = \P(\LD(D)) .\] We call $\mathcal{D}$ the \emph{linear system}. \begin{flashcard}[div-support-defn] \begin{definition*}[Support of a divisor] \glsnoundefn{supp}{support}{N/A} \glssymboldefn{supp}{Supp$(D)$}{Supp$(D)$} \cloze{For a \gls{div} $D = \sum_{i = 1}^n a_i p_i$ with $a_i \neq 0$, we define the \emph{support} of $D$ to be $\Supp(D) = \{p_1, \ldots, p_n\}$.} \end{definition*} \end{flashcard} \begin{flashcard}[bp-free-defn] \begin{definition*}[Base-point free] \glsadjdefn{bpfree}{base-point free}{P(V)} \cloze{We say $\mathcal{D} = \P(V)$ is \emph{base-point free} if $\forall p \in C$, $\exists D' \in \mathcal{D}$ (where we identify $[f] \in D$ with $D + \divzp(f)$) with $p \notin \Supp D'$.} \end{definition*} \end{flashcard} \vspace{-1em} (This is assumption (2): $\forall p \in C$, there exists $b_0, \ldots, b_n$ such that $p \notin \Supp(D + \divzp(\sum_i b_i f_i))$). In this case, the theorem applies, and we obtain $f : C \to \P^n$ with the property that \[ \mathcal{D} = \{\fstar f H \st H \subseteq \P^n \text{ hyperplane}\} .\] \textbf{Converse:} Suppose $f : L \to \P^n$ is a \gls{gmorph}. Set $D = \fstar f \Z(x_0)$. (Assume $f(C) \subseteq \Z(x_0)$). Let $f_i \in \K(C)$ be given by \[ r_i = \frac{x_1}{x_0} \circ f ,\] a rational function on $C$ which is \gls{gregf} on $C \setminus f^{-1}(\Z(x_0))$. Then $f = (f_0 : f_1 : \cdots : f_n)$ on $C \setminus f^{-1}(\Z(x_0))$ and hence $f$ is induced by the linear system $\mathcal{D} \subseteq \dbar|D|$, $\mathcal{D} = \P(V)$ with $V$ spanned by $f_0, \ldots, f_n \in \LD(D)$. By the previous theorem, $\fstar f \Z(\sum_i a_i x_i) = D + \divzp(\sum_i a_i f_i) \in \mathcal{D}$. Note $\mathcal{D}$ is \gls{bpfree}, since given $p \in C$, can find a hyperplane $H \subseteq \P^n$ with $f(p) \notin H$, so $p \notin \Supp \fstar f H$, while $\fstar f H \in \mathcal{D}$. \begin{remark*} If $f : C \hookrightarrow \P^n$ is an embedding, then $\fstar f H$ can be viewed as ``$H \cap C$ iwth multiplicaion'', and \[ D = \{H \cap C \st H \subseteq \P^n \text{ hyperplane}\} .\] \end{remark*} \begin{remark*} Can also pull-back hypersurfaces $H \subseteq \P^n$, with $H = \Z(\varphi)$, $\varphi$ a homogeneous polynomial of degree $d$, as follows. For $p \in f^{-1}(H)$, choose a homogeneous polynomial $\psi$ which doesn't vanish at $f(p)$ and take the coefficient of $p$ in $\fstar f H$ to be \[ \nuf_p \left( \frac{\varphi}{\psi} \circ f \right) .\] \end{remark*} \begin{flashcard}[degree-of-f-morphism-defn] \begin{definition*}[Degree of a curve morphism] \glspropdefn{degcm}{degree}{\gls{gmorph}} \cloze{Let $f : C \to \P^n$ be a \gls{gmorph}, $L \subseteq \P^n$ a hyperplane, $f(C) \not\subseteq L$. The \emph{degree of $f$} is the degree of the \gls{div} $\fstar f L$. This is well-defined since $\fstar f L$, $\fstar f L'$ are \gls{linequiv} and \gls{linequiv} \glspl{div} have the same defgree.} \end{definition*} \end{flashcard} \begin{example*} Let $f : C \hookrightarrow \P^2$ identify $C$ with $\Z(\varphi)$ where $\varphi$ has degree $d$. In this case, the \gls{degcm} of $f$ is $d$. (Check this: need to compare coefficients in $\fstar f L$ with the multiplicativity of zeroes of $\varphi|_L$). \end{example*} \begin{flashcard}[deg-fstar-H-formula-thm] \begin{theorem*} Let $f : C \to \P^n$ be a \gls{gmorph}. $H \subseteq \P^n$ a hypersurface with $f(C) \not\subseteq H$. $H = \Z(\varphi)$. $\deg \varphi = e$. Then $\deg \fstar f H = (\deg f) \cdot e$. \end{theorem*} \begin{proof} \cloze{Choose some $x_i$ such that $f(C) \not\subseteq \Z(x_i)$. Then $\frac{\varphi}{x_i^e}$ is a rational function in $\P^n$ and $\frac{\varphi}{x_i^e} \circ f$ is a rational function on $C$. Assume $H \cap L \cap f(C) = \emptyset$. Then \begin{align*} \left( \frac{\varphi}{x_i^e} \circ f \right) &= \sum_{p \in f^{-1}(H)} \nuf_p \left( \frac{\varphi}{x_i^e} \circ f \right) p - \sum_{p \in f^{-1}(L)} \left( \frac{x_i^e}{\varphi} \circ f \right) \\ &= \fstar f H - e \fstar f L \end{align*} Since the degree of a principal \gls{div} is $0$, we get $\deg \fstar f H = e \cdot \deg \fstar f L$.} % Thus $\fstar f H$ is \gls{linequiv} to $e \fstar % f L$, so $\deg \fstar f H = e \cdot \deg \fstar % f L = e \cdot \deg f$.} \end{proof} \end{flashcard}