%! TEX root = AG.tex % vim: tw=50 % 22/01/2024 12PM \begin{flashcard}[ideal-of-X-defn] \begin{definition*}[Ideal of a set] \glssymboldefn{polyideal}{$I(X)$}{$I(X)$} \cloze{ Let $X \subseteq \AA^n$ be a subset. Define \[ I(X) = \{f \in A = \KK[X_1, \ldots, X_n] \st f(p) = 0 ~\forall p \in X\} .\]} \end{definition*} \end{flashcard} \begin{remark*} $I(X)$ is an ideal: if $f, g \in I(X)$, then $f + g \in I(X)$. If $f \in A$, $g \in I(X)$ then $f \cdot g \in I(X)$. \end{remark*} \begin{remark*} If $S_1 \subseteq S_2 \subseteq \polyA$, then $\Z(S_2) \subseteq \Z(S_1)$. If $X_1 \subseteq X_2 \subseteq \AA^n$, then $I(X_2) \subseteq I(X_1)$. \end{remark*} \vspace{-1em} \textbf{Question:} Given an ideal $I$, what is the relationship between $I$ and $\I(\Z(I))$? \begin{example*} $I = \langle x^2 \rangle \le \KK[X]$. \[ \Z(I) = \{0\} \subseteq \AA^1, \qquad \I(\Z(I)) = \I(\{0\}) = \langle X \rangle \neq I .\] \end{example*} \begin{flashcard}[radical-of-ideal] \begin{definition*}[Radical of an ideal] \glssymboldefn{radicalideal}{$sqrtI$}{$sqrtI$} \cloze{Let $I \subseteq A$ be an ideal in a commutative ring $A$. The \emph{radical} of $I$ is \[ \sqrt{I} \defeq \{f \in A \st \text{$f^n \in I$ for some $n > 0$}\} .\]} \end{definition*} \end{flashcard} \begin{lemma*} $\sqrtideal{I}$ is an ideal. \end{lemma*} \begin{proof} Suppose $f, g \in \sqrtideal{I}$, say $f^{n_1}, g^{n_2} \in I$. Then \[ (f + g)^{n_1 + n_2 + 1} = \sum_{i = 0}^{n_1 + n_2 + 1} {n_1 + n_2 + 1 \choose i} f^i g^{n_1 + n_2 + 1 - i} \] For each $i$, either $i \ge n_1$ or $(n_1 + n_2 + 1) - i \ge n_2$. So each term lies in $I$, hence $(f + g)^{n_1 + n_2 + 1} \in I$. Thus $f + g \in \sqrtideal{I}$. If $f \in \sqrtideal{I}$, $g \in A$, then $f^n \in I$ for some $n$, so $(fg)^n \in I$ so $fg \in \sqrtideal{I}$. \end{proof} \begin{flashcard}[algeset-IZI-is-I-prop] \begin{proposition*} \phantom{} \begin{enumerate}[(a)] \item If $X \subseteq \AA^n$ is \gls{algset}, then \[ \Z(\I(X)) = X .\] \item If $I \subseteq A$ is an ideal, then \[ \sqrtideal{I} \subseteq \I(\Z(I)) .\] \end{enumerate} \end{proposition*} \begin{proof} \phantom{} \begin{enumerate}[(a)] \item \cloze{Since $X$ is \gls{algset}, $X = \Z(I)$ for some $I$. Certainly, $I \subseteq \I(X)$ by definition of $Z$ and $\I(X)$. Thus $\Z(\I(X)) \subseteq \Z(I) = X$. But $X \subseteq \Z(\I(X))$ is obvious.} \item \cloze{Let $f^n \in I$. Then $f^n$ vanishes on $\Z(I)$, and hence $f$ vanishes on $\Z(I)$ also. So $f \in \I(\Z(I))$, hence $\sqrtideal{I} \subseteq \I(\Z(I))$.} \qedhere \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[hilbert-null-thm] \begin{theorem*}[Hilbert's Nullstellensatz] \label{hilbert_null} \cloze{Let $\KK$ be an algebraically closed field. Then \[ \sqrtideal{I} = \I(\Z(I)) .\]} \end{theorem*} \end{flashcard} \begin{proof} Later. \end{proof} \begin{example*} $\KK = \RR$. $I = \langle X^2 + Y^2 + 1 \rangle \subseteq \RR[X, Y]$. Then $\Z(I) = \emptyset$, $\I(\Z(I)) = \RR[X, Y] \neq \sqrtideal{I}$. \end{example*} \subsection{Irreducible Subsets} \begin{flashcard}[irreducible-subset-of-topology-defn] \begin{definition*}[Irreducible subset] \glsadjdefn{irredsub}{irreducible}{subset of a topological space} \cloze{Let $X$ be a topological space, and $Z \subseteq X$ a closed subset. We say $Z$ is \emph{irreducible}, if $Z$ is non-empty, and whenever $Z = Z_1 \cup Z_2$ with $Z_1, Z_2$ closed in $X$, then either $Z = Z_1$ or $Z = Z_2$.} \end{definition*} \end{flashcard} \begin{remark*} Bad notion in the Euclidean topology in $\CC^n$. Only \gls{irredsub} sets are points. \end{remark*} \begin{example*} $\AA^1$ is \gls{irredsub} as long as $\KK$ is infinite. \end{example*} \begin{flashcard}[affine-algebraic-variety-defn] \begin{definition*}[Affine algebraic variety] \glsnoundefn{aavty}{variety}{varieties}% \glsnoundefn{affvty}{affine variety}{affine varieties} \cloze{An \emph{(affine algebraic) variety} in $\AA^n$ is an \gls{irredsub} \gls{algset} set.} \end{definition*} \end{flashcard} \vspace{-1em} How do we recognize \gls{irredsub} \gls{algset} sets algebraically? \begin{flashcard}[ideal-of-union-prop] \begin{proposition*} If $X_1, X_2 \subseteq \AA^n$, then \[ \I(X_1 \cloze{\cup} X_2) = \I(X_1) \cloze{\cap} \I(X_2) \] \end{proposition*} \begin{proof} \cloze{Since $X_1, X_2 \subseteq X_1 \cup X_2$, we have $\I(X_1 \cup X_2) \subseteq \I(X_1), \I(X_2)$, so $\I(X_1 \cup X_2) \subseteq \I(X_1) \cap \I(X_2)$. Conversely, if $f \in \I(X_1) \cap \I(X_2)$, then $f \in \I(X_1 \cup X_2)$.} \end{proof} \end{flashcard} \textbf{Recall} (from \courseref{GRM})\textbf{:} An ideal $P \subseteq R$ is \emph{prime} if $P \neq R$ and whenever $f \cdot g \in P$, either $f \in P$ or $g \in P$. \begin{flashcard}[ideal-intersection-in-prime-ideal-lemma] \begin{lemma*} Let $P \subseteq A$ be a prime ideal, and let $I_1, \ldots, I_n \subseteq A$ be ideals. Suppose \cloze{$P \supseteq \bigcap_i I_i$. Then $p \supseteq I_i$ for some $i$. In particular, if $p = \bigcap_i I_i$, then $P = I_i$ for some $i$.} \end{lemma*} \cloze{ \begin{example*} $A = \ZZ$, $P = \langle p \rangle$, $p$ a prime number. Let $I_i = \langle n_i \rangle$. Then \[ \bigcap_i I_i = \langle \lcm(n_1, \ldots, n_s) \rangle \] Then $P \supseteq \bigcap_i I_i \iff p \mid \lcm(n_1, \ldots, n_s)$, and the condition on the right implies that $p \mid n_i$ for some $i$. \end{example*} } \begin{proof} \cloze{Suppose $P \not\supseteq I_i$ for any $i$. Thus we can find $x_i \in I_i$, $x_i \notin P$. Then \[ \prod_{i = 1}^n x_i \in \cap_{i = 1}^n I_i \subseteq P ,\] so there exists $i$ with $x_i \in P$, a contradiction. If $P = \bigcap_i I_i$, $P \subseteq I_i$ for each $i$ and since we know $I_i \subseteq P$ for some $i$, we have $P = I_i$ for that $i$.} \end{proof} \end{flashcard} \begin{proposition*} Let $\KK$ be algebraically closed. Then an \gls{algset} set $X \subseteq \AA^n$ is \gls{irredsub} if and only if $\I(X) \subseteq \polyA = \KK[X_1, \ldots, X_n]$ is prime. \end{proposition*}