%! TEX root = AG.tex % vim: tw=50 % 01/03/2024 12PM Let $C$ be a projective non-\gls{sing} \gls{curve}, and $f \in \K(C)^\times$. $f : C \to \P^1$, $p \mapsto (f(p) : 1)$, or writing $f = \frac{g}{h}$, $g, h$ homogeneous polynomials of the same degree, then $f : C \to \P^1$, $p \mapsto (g(p) : h(p))$. Then \[ \divzp(f) = \sum_{p \in f^{-1}((0 : 1))} e_p p - \sum_{q \in f^{-1}((1 : 0))} e_q q .\] Thus, if we define \[ \deg \sum_{p \in C} a_p p = \sum_{p \in C} a_p ,\] then $\deg \divzp(f) = \deg f - \deg f = 0$. Thus every \gls{prin} \gls{div} is degree $0$. Thus the homomorphism $\deg : \Div C \to \ZZ$ descends to $\deg : \Cl C \to \ZZ$, and this is surjective as $\deg p = 1$. \subsubsection*{Linear systems} \begin{flashcard}[effective-divisor-defn] \begin{definition*}[Effective divisor] \glsadjdefn{eff}{effective}{\gls{div}} \glssymboldefn{effvs}{$L(D)$}{$L(D)$} Let $D \in \Div C$, $D = \sum_i n_i p_i$. We say $D$ is \emph{effective} if $n_i \ge 0$ for all $i$. Define \[ \LD(D) = \{f \in \K(C)^\times \st D + \divzp(f) \text{ is \gls{eff}}\} \cup \{0\} .\] \end{definition*} \end{flashcard} \begin{flashcard}[LD-vec-space-lemma] \begin{lemma*} $\LD(D)$ is a vector space. \end{lemma*} \begin{proof} \cloze{$f \in \LD(D)$ implies $cf \in \LD(D)$ for $c \in \KK$, $c \neq 0$, since $\divzp(f) = (cf) = (c) + (f)$. If $f, g \in \LD(D)$, $f, g$ non-zero, $f + g \neq 0$, then \[ \divzp(f + g) = \sum_p \nuf_p(f + g) p \] and $\nuf_p(f + g) \ge \min\{\nuf_p(f), \nuf_p(g)\}$. Thus if $D + \divzp(f)$, $D + \divzp(g)$ are effective, then so is $D + \divzp(f + g)$.} \end{proof} \end{flashcard} \begin{flashcard}[LD-finite-dimensional-thm] \begin{theorem*} $\LD(D)$ is a finite dimensional vector space and $\LD(0) = \KK$. Furthermore, $\dim_{\KK} \LD(D) \le \deg D + 1$. \end{theorem*} \begin{proof} \cloze{Induction on $\deg D$. If $\deg D < 0$, then there are no \gls{eff} \glspl{div} \gls{linequiv} to $D$, so $\LD(D) = 0$. Suppose $\deg D \ge 0$, write $D = \sum_i n_i p_i$ and pick $p \in C \setminus \{p_1, \ldots, p_n\}$. Consider the map \[ \lambda : \LD(D) \to \KK, \qquad f \mapsto f(p) .\] which makes sense since $\nuf_p(f) \ge 0$ for $f \in \LD(D)$, since otherwise the coefficient of $p$ in $D + \divzp(f)$ is negative. If $f \in \ker \lambda$, then $f \in m_p \subseteq \OXp_{C, p}$, so $\nuf_p(f) \ge 1$. Thus $f \in \LD(D - P)$. Note also $\LD(D - D) \subseteq \LD(D)$, since if $D - P + \divzp(f)$ is \gls{eff} then so is $D - \divzp(f)$. Thus $\LD(D - P) = \ker\lambda$, and $\frac{\LD(D)}{\LD(D - P)} \subseteq \KK$. Thus $\dim_{\KK} \LD(D) \le \dim \LD(D - P) + 1$. Thus by induction, $\dim_{\KK} \LD(D) \le \deg D + 1$. Thus $\dim\LD(0) \le 1$, but $\KK \subseteq \LD(D)$ since $0 + \divzp(c) = 0$. So $\dim \LD(0) = 1$.} \end{proof} \end{flashcard} \begin{remark*} $\LD(0) = \{f : C \to \KK \text{ \gls{gregf}}\}$, and hence \gls{gregf} functions on $C$ are constant. \end{remark*} \begin{flashcard}[complete-linear-system-defn] \begin{definition*}[Complete linear system] \glsnoundefn{clsa}{complete linear system}{N/A} \glssymboldefn{Dbar}{$|D|$}{$|D|$} \cloze{Given a \gls{div} $D$, we define the \emph{complete linear system associated} to $D$ to be \begin{align*} |D| &= \{D' \in \Div C \st \text{$D'$ \gls{eff}, $D' \sim D$}\} \\ &= \frac{\LD(D) \setminus \{0\}}{\sim} &&(f \sim \lambda f) \\ &= \P(\LD(D)) \end{align*} a projective space.} \end{definition*} \end{flashcard} \subsubsection*{Morphisms to projective space} Let $D$ be a \gls{div}, $f_0, \ldots, f_n \in \LD(D)$ with not all $f_i$ being $0$. This gives a \gls{gmorph} $f : C \to \P^n$, $p \mapsto (f_0(p) : \cdots : f_n(p))$. \begin{flashcard}[fstar-hyperplane-defn] \begin{definition*}[$f^* H$] \glssymboldefn{fstar}{$f^* H$}{$f^* H$} \cloze{Let $f : C \to \P^n$ be a \gls{gmorph}. Let $H \subseteq \P^n$ be a hyperplane with $f(C) \not\subseteq H$. We define $f^* H \in \Div X$ as follows. Let $H = \Z(\varphi)$ with $\varphi$ a linear homogeneous polynomial and choose $\psi$ linear homogeneous so that $H' = \Z(\psi)$ satisfies $f^{-1}(H) \cap f^{-1}(H') = \emptyset$. Define \[ f^* H = \sum_{p \in f^{-1}(H)} \nuf_p \left( \frac{\varphi}{\psi} \circ f \right) p \]} \end{definition*} \end{flashcard} \begin{center} \includegraphics[width=0.6\linewidth]{images/8a6da034ac4045ed.png} \end{center} \begin{remark*} This is independent of the choice of $\psi$. For example \[ \frac{\varphi}{\psi'} = \frac{\varphi}{\psi} \frac{\psi}{\psi'} .\] \end{remark*} \subsubsection*{Relations to morphisms} Let $f_0, \ldots, f_n \in \LD(D)$ to have the properties: \begin{enumerate}[(1)] \item The $f_i$ aren't all $0$. \item $\forall p \in C$, $\exists a_0, \ldots, a_n \in \KK$ such that the coefficient of $p$ in $D + \divzp(\sum_i a_i f_i)$ is $0$. \end{enumerate} As above, we get a \gls{gmorph} $f : C \to \P^n$. Let $H \subseteq \P^n$ be given by an equation $\sum_i a_i x_i = 0$.