%! TEX root = AG.tex % vim: tw=50 % 28/02/2024 12PM Let $C$ be a projective non-\gls{sing} curve. \begin{flashcard}[div-zero-pole-defn] \begin{definition*}[Divisor of zeroes and poles] \glssymboldefn{divzp}{$(f)$}{$(f)$} \glsnoundefn{divzp}{divisor of zeroes and poles}{N/A} \cloze{For $f \in \K(C) \setminus \{0\}$, the \emph{divisor of zeroes and poles} of $f$ is \[ (f) = \sum_{p \in C} \nuf_p(f) \cdot p .\]} \end{definition*} \end{flashcard} \begin{remark*} Note $f$ is represented on some open subset $U \subseteq C$ by $\frac{g}{h}$, $g, h$ homogeneous polynomials. We shrink $U$ by removing $\Z(g), \Z(h)$. Now, if $p \in U$, $f = \frac{g}{h} \in \OXp_{C, p}$ is a regular function with $f(p) \neq 0$, so $\nuf_p(f) = 0$. Thus the sum defining $\divzp(f)$ is a sum over points of $C \setminus U$, which is a finite set. (Here we use $\dim C = 1$, so that irreducible sets are $C$ and singleton sets). \end{remark*} \begin{flashcard}[group-prin-div-defn] \begin{definition*}[Group of principal divisors] \glsnoundefn{gppdiv}{group of principal divisors}{N/A} \cloze{The group of \emph{principal divisors} on $C$ is \[ \Prin C = \{\divzp(f) \mid f \in \K(C) \setminus \{0\}\} .\]} \end{definition*} \end{flashcard} \vspace{-1em} This is a subgroup since: \begin{itemize} \item $\divzp(f \cdot g) = \divzp(f) + \divzp(g)$ \item $\divzp(f^{-1}) = -\divzp(f)$. \end{itemize} \begin{flashcard}[div-class-gp-defn] \begin{definition*}[Divisor class group] \cloze{The \emph{(divisor) class group} is \[ \Cl C \defeq \frac{\Div C}{\Prin C} .\]} \end{definition*} \end{flashcard} \begin{flashcard}[linearly-equiv-defn] \begin{definition*}[Linearly equivalent] \glsadjdefn{linequiv}{linearly equivalent}{linearly equivalent} \cloze{If $D, D' \in \Div C$ satisfy $D - D' = \divzp(f)$ for some $f \in \K(C)^\times$, then we say $D$ is \emph{linearly equivalent} to $D'$, and write \[ D \sim D' .\]} \end{definition*} \end{flashcard} \vspace{-1em} \textbf{Digression:} Extending \glspl{gmorph} to projective space. $C$ a projective non-\gls{sing} curve, $\emptyset \neq U \subseteq C$ an open subset. $f_0, \ldots, f_n$ \gls{gregf} functions on $U$ without a common zero. Then we obtian a \gls{gmorph} \begin{align*} f : U &\to \P^n \\ p &\mapsto (f_0(p) : \cdots : f_n(p)) \end{align*} \begin{flashcard}[curve-morph-extension-thm] \begin{theorem*} $f : U \to \P^n$ extends to a \gls{gmorph} $f : C \to \P^n$. \end{theorem*} \begin{proof} \cloze{Suppose either $f_i$ has a pole at $p \in C$ (i.e. $\nuf_p(f_i) < 0$) or all $f_i$ are zero at $p$. Let \[ m = \min\{\nuf_p(f_i) \st 0 \le i \le n\} .\] Let $t$ be a local parameter at $p$, i.e. a generator of $m_p \subseteq \OXp_{C, p}$. So $\nuf_p(t) = 1$. Then $\nuf_p(t^{-m} f_i) = \nuf_p(f_i) - m$. Thus $\nuf_p(t^{-m} f_i) = 0$ for some $i$ and $\nuf_p(t^{-m} f_j) \ge 0$. Thus $t^{-m} f_0, \ldots, t^{-m} f_n \in \OXp_{C, p}$, and these functions don't simultaneously vanish at $p$. Hence in some neighbourhood $V$ of $p$, we obtain a \gls{gmorph} $f_p : V \to \P^n$ given by $q \mapsto ((t^{-m} f_0)(p) : \cdots : (t^{-m} f_n)(p))$. This agrees with $f$ on $U \cap V$ by rescaling.} \end{proof} \end{flashcard} \begin{flashcard}[non-const-morph-curve-facts] \begin{proposition*} Let $f : X \to Y$ be a non-constant \gls{gmorph} between projective non-\gls{sing} \glspl{curve}. Then \begin{enumerate}[(1)] \item \cloze{$f^{-1}(q)$ is a finite set for all $q \in Y$} \item \cloze{$f$ induces an inclusion $\K(Y) \hookrightarrow \K(X)$ such that $[\K(X) : \K(Y)]$ is finite. We call $[\K(X) : \K(Y)]$ the \emph{degree} of $f$.} \end{enumerate} \end{proposition*} \begin{proof} \phantom{} \begin{enumerate}[(1)] \item \cloze{$f^{-1}(q) \subseteq X$ is closed, and since $\dim X = 1$, either $f^{-1}(q)$ is finite, or $f^{-1}(q) = X$. The latter contradicts $f$ being non-constant.} \item \cloze{If $\varphi \in \K(Y)$, then $\varphi$ defines a \gls{gregf} function on some open $U \subseteq Y$. $\varphi : U \to \KK$. $\varphi \circ f$ makes sense provided $f(X) \not\subseteq Y \setminus U$. But $f(X)$ is irreducible (point set topology exercise), so $f$ is constant if $f(X) \subseteq Y \setminus U$. Thus $\varphi \circ f$ makes sense as a rational function on $X$. Thus $\K(Y) \to \K(X)$ exists and is automatically an injection since both are fields. Omit proof of finiteness.} \qedhere \end{enumerate} \end{proof} \end{flashcard} \begin{flashcard}[deg-ram-defn] \begin{definition*}[Degree of ramification] \glsnoundefn{degram}{degree of ramification}{N/A} \cloze{Suppose $f : X \to Y$ is a non-constant \gls{gmorph} between projective non-\gls{sing} \glspl{curve}. Let $p \in Y$, $m_p = (t) \subseteq \OXp_{Y, p}$, $t$ a local parameter. Let $q \in f^{-1}(p)$. Then $t \circ f \in \OXp_{X, q}$. Define \[ e_q \defeq \nu_q(t \circ f) ,\] the \emph{degree of ramification} of $f$ at $q$.} \end{definition*} \end{flashcard} \begin{flashcard}[degram-sum-degf-thm] \begin{theorem*} Let $f : X \to Y$ a non-constant \gls{gmorph} between projective non-\gls{sing} \glspl{curve}. Then for $p \in Y$, \[ \cloze{\sum_{q \in f^{-1}(p)} e_q = \deg f} \] \cloze{is the degree of $f$.} \end{theorem*} \begin{proof} \cloze{Omitted, but the theorem statement is crucial.} \end{proof} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item $\characteristic \KK \neq 2$, $f : \P^1 \to \P^1$, $(u, v) \mapsto (u^2 : v^2)$. Setting $v = 1$, this gives a \gls{gmorph} $\AA^1 \to \AA^1$ given by $u \mapsto u^2$. If $p \in \AA^1$, $t = u - p$ is a local parameter at $p$. $t \circ f = u^2 - p = (u - q)(u + q)$ where $q^2 = p$. Then $e_q = e_{-q} = 1$. We have $\deg f = e_q + e_{-q} = 2$. \item If $p = 0$, $f^{-1}(p) = \{0\}$, $e_0 = \nu_0(u^2) = 2$. Function fields, $\K(\P^1) = \KK(u)$, $\KK(u) \to \KK(y)$, $u \mapsto u^2$ degree $2$. \item $\characteristic \KK = p$, $f : \P^1 \to \P^1$, $(u : v) \mapsto (u^p : v^p)$. Set $v = 1$, $u \mapsto u^p$. $f^{-1}(q) = \{r\}$ with $r^p = q$, $q \in \AA^1$. Then $t = u - q$. $t \circ f = u^p - q = (u - r)^p$. \end{enumerate} \end{example*} \vspace{-1em} \textbf{Application:} Let $X$ be a projective non-\gls{sing} \gls{curve}, $f \in \K(X)^\times$. This gives a \gls{gmorph} $U \to \P^1$ where $U$ is the open set in which $f$ is singular. This extends to $f : C \to \P^1$, non-constant as long as $f \notin \KK$.