%! TEX root = AG.tex % vim: tw=50 % 26/02/2024 12PM \begin{flashcard}[nonsing-proj-curve-mp-prin-ideal] \begin{corollary*} Let $C \subseteq \P^n$ be a non-\gls{sing} projective \gls{curve}. Then $m_p \subseteq \OXp_{C, p}$ \cloze{is a principal ideal.} \end{corollary*} \begin{proof} \cloze{We begin by proving $\OXp_{C, p}$ is Noetherian. Replace $C$ by an open affine neighbourhood of $p \in C$, $C'$. This does not change $\OXp_{C, p}$, i.e. $\OXp_{C, p} = \OXp_{C', p}$. Then \[ \OXp_{C', p} = \left\{ \frac{f}{g} ~\bigg|~ f, g \in \cring A(C') = \frac{\KK[x_1, \ldots, x_n]}{\I(C')} \right\} \subseteq \K(C') .\] If $J \subseteq \OXp_{C', p}$, then \[ J = \left\{ \frac{f}{g} ~\bigg|~ f \in \cring A(C') \cap J, g \in \cring A(C'), g(p) \neq 0) \right\} \subseteq \OXp_{C', p} .\] Prove $\subseteq$: if $f / g \in J$, then $g \cdot \left( \frac{f}{g} \right) = f \in J$, so $f \in \cring A(C') \cap J$. Prove $\supseteq$: if $f \in \cring A(C') \cap J$, then $\frac{f}{g} = \frac{1}{g} \cdot f \in J$ (if $g(p) \neq = 0$). Now $\KK[x_1, \ldots, x_n]$ is Noetherian by Hilbert's basis theorem. Hence $\cring A(C') = \KK[x_1, \ldots, x_n] / \I(C')$ is Noetherian. Hence $\cring A(C') \cap J$ is finitely generated, and by the equation for $J$, the set of generators of $\cring A(C')$ generate $J$ as an ideal in $\OXp_{C', p}$. Since $C$ is non-\gls{sing} of \gls{avdim} $1$, \[ 1 = \dim \tspace_p C = \dim(m_p / m_p^2)^* .\] Also, $\OXp_{C, p} / m_p \stackrel{\cong}{\to} \KK$, $f + m_p \mapsto f(p)$. Thus $m_p / m_p^2$ is a 1-dimensional vector space over $\OXp_{C, p} / m_p$, hence by the previous Corollorary to \nameref{nakayama}, $m_p$ is generated by the lift of a 1 element basis of $m_p / m_p^2$. Thus $m_p$ is principal (we need $m_p$ finitely generated here!).} \end{proof} \end{flashcard} \begin{flashcard}[nu-defn] \begin{remark*} \glssymboldefn{nu}{$\nu$}{$\nu$} \cloze{Let $t \in m_p$ be a generator. We get a chain of ideals \[ \cdots \subseteq (t^3) \subseteq (t^2) \subseteq (t) = m_p \subset \OXp_{C, p} .\] Notice if $(t^{k + 1}) = (t^k)$, then $m_p \cdot (t^k) = (t^k)$. But then \nameref{nakayama} tells us that $(t^k) = 0$. But $t^k \neq 0$ since $\OXp_{C, p}$ is an integral domain. Also, consider $I = \bigcap_{k = 1}^\infty (t^k)$. Clearly $t \cdot I = I$, so $m_p \cdot I = I$, so $I = 0$. \textbf{Consequence:} If $f \in \OXp_{C, p} \setminus \{0\}$, then there exists a unique $\nu \ge 0$ such that $f \in (t^\nu)$ but $f \notin (t^{\nu + 1})$.} Define $\nu : \cloze{\OXp_{C, p} \setminus \{0\} \to \ZZ}$ \cloze{by $\nu(f) = \nu$ as above.} \end{remark*} \end{flashcard} \begin{remark*} \phantom{} \begin{itemize} \item $\nuf(f \cdot g) = \nuf(f) + \nuf(g)$. \item $\nuf(f + g) \ge \in\{\nuf(f), \nuf(g)\}$ with equality if $\nuf(f) \neq \nuf(g)$. \end{itemize} Can extend $\nuf$ to a map \[ \nuf : \K(C) \setminus \{0\} \eqdef \K(C)^\times \to \ZZ \] by \[ \nuf \left( \frac{f}{g} \right) = \nuf(f) - \nuf(g) .\] $\nuf$ is an example of a \emph{discrete valuation}. \end{remark*} \begin{flashcard}[discrete-valuation-defn] \begin{definition*}[Discrete valuation] \glsnoundefn{discv}{discrete valuation}{discrete valuations} \cloze{Let $K$ be a field. A \emph{discrete valuation} on $K$ is a function $\nu : K^\times \to \ZZ$ such that \begin{enumerate}[(1)] \item $\nu(f \cdot g) = \nu(f) + \nu(g)$. \item $\nu(f + g) \ge \min\{\nu(f), \nu(g)\}$ with equality if $\nu(f) \neq \nu(g)$. \end{enumerate} } \end{definition*} \end{flashcard} \begin{flashcard}[DVR-defn] \begin{definition*}[Discrete valuation ring] \glsnoundefn{dvr}{discrete valuation ring}{discrete valuation rings} \cloze{Given a \gls{discv}, we define the corresponding \emph{discrete valuation ring} (DVR) by \[ R = \{f \in K^\times \mid \nu(f) \ge 0\} \cup \{0\} \] which is a subring of $K$. We also define \[ m = \{f \in K^\times \st \nu(f) \ge 1\} \cup \{0\} .\] Note $m$ is the unique maximal ideal of $R$: if $f \in R \setminus m$, then $\nu(f) = 0$, so $\nu(f^{-1}) = 0$, so $f^{-1} \in R$.} \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item $R = \OXp_{C, p} \subseteq K = \K(C)$. $\nuf$ the \gls{discv} we defined. \item Let $p \in \ZZ$ be prime, $K = \QQ$. Any rational number can be written as $\frac{a}{b} p^\nu$ with $(a, p) = 1$, $(b, p) = 1$. Then define \[ \nu_p \left( \frac{a}{b} p^\nu \right) = \nu .\] This is a \gls{discv}, with \gls{dvr} \[ \ZZ_{(p)} = \left\{ \frac{a}{b} \in \QQ \st p \nmid b \right\} .\] \item $K = \KK(x)$, $a \in \KK$. Define \[ \nu\left((x - a)^\nu \frac{f}{g}\right) = \nu \] where $f, g$ are relatively prime to $x - a$. Here the \gls{dvr} is $\OXp_{\AA^1, a}$. \item Let $K = \KK(x)$, \[ \nu \left( \frac{f}{g} \right) = \deg g - \deg f .\] This is the ``order of $0$ at $\infty$''. \end{enumerate} \end{example*} \vspace{-1em} \textbf{Setup:} $C \subseteq \P^n$ a projective non-\gls{sing} \gls{curve}. Each point $p \in C$ gives a \gls{discv} $\nuf_p : \K(C)^\times \to \ZZ$ with \gls{dvr} $\OXp_{C, p}$. For $f \in \K(C)^\times$, we define the \gls{div} of zeroes and poles of $f$ to be \[ (f) \defeq \sum_{p \in C} \nuf_p(f) p \] Next time: need to check that this is a finite sum!