%! TEX root = AG.tex % vim: tw=50 % 23/02/2024 12PM \begin{remark*} If $\KK$ is algebraically closed, then $\dim \KK[x_1, \ldots, x_n]$ agrees with the \gls{kdimt} of $\AA^n$. If $X \subseteq \AA^n$ is an \gls{affvty}, then $\dim \cring A(X)$ equals the \gls{kdimt} of $X$ (check: there exists a $1-1$ correspondence between prime ideals of $\cring A(X)$ and irreducible subsets of $X$). \end{remark*} \begin{flashcard}[dimension-equalities-thm] \begin{theorem*} If $X$ is a \gls{vty}, then \[ \dimX X = \cloze{\Trdeg_{\KK} \K(X)} = \cloze{\text{\gls{kdimt} of $X$}} = \cloze{\text{\gls{kdimr} of $\OXp_{X, p}$}} \] for $p \in X$. \end{theorem*} \begin{proof} ``Dimension theory'' -- non-examinable proof. \end{proof} \end{flashcard} \begin{example*} In \es{1}, we showed that if $X = \Z(f) \subseteq \AA^2$, then the clsoed subsets of $X$ are $X$ and finite subsets of $X$. Thus the \gls{kdimt} of $X$ is $1$. \end{example*} \newpage \section{Curves} \begin{flashcard}[algebraic-curve-defn] \begin{definition*}[Algebraic curve] \glsnoundefn{curve}{curve}{curves} \cloze{An \emph{(algebraic) curve} is a \gls{vty} $C$ with $\dimX C = 1$.} \end{definition*} \end{flashcard} \begin{flashcard}[curve-Dn-defn] \begin{definition*} \glssymboldefn{Div}{Div$C$}{Div$C$} \glsnoundefn{div}{divisor}{divisors} Let $C \subseteq \P^n$ be a \cloze{projective non-\gls{sing} \gls{curve}}. We define $\Div C$ to be the \cloze{free abelian group generated by the points of $C$. This is called the group of \emph{divisors} of $C$. An element of $\Div C$ is of the form $\sum_{i = 1}^n a_i p_i$, $a_i \in \ZZ$, $p_i \in C$.} \end{definition*} \end{flashcard} \begin{example*} Consider $C = \P^1$. An element of $\K(C)$ is the raito $\frac{f(x_0, x_1)}{g(x_0, x_1)}$ where $f, g$ are \gls{homog} polynomials of the same degree. we can write \[ \frac{f}{g} = \frac{\prod_i (b_i x_0 - a_i x_1)^{m_i} }{\prod_j (d_j x_0 - c_j x_1)^{n_j}} \] $\sum m_i = d = \sum n_j$. Let $P_i = (a_i : b_i)$, $Q_j = (c_j : d_j)$. $\frac{f}{g}$ has a zero of order $m_i$ at $P_i$ and a pole of order $n_j$ at $Q_j$. The divisors of zeroes and poles of $\frac{f}{g}$ is \[ \left( \frac{f}{g} \right) = \sum_i m_i P_i - \sum_j n_j Q_j .\] \end{example*} \begin{flashcard}[principal-divisor-defn] \begin{definition*}[Principal divisor] \glssymboldefn{Prin}{Prin$C$}{Prin$C$} \glssymboldefn{Cl}{Cl$C$}{Cl$C$} \glsadjdefn{prin}{principal}{divisor} \cloze{We call a \gls{div} $D \in \Div C$ \emph{principal} if it is of the form $\left( \frac{f}{g} \right)$. Let $\Prin C \subseteq \Div C$ be the subgroup of principal divisors and define the \emph{class group} of $C$ to be \[ \Cl C = \frac{\Div C}{\Prin C} .\]} \end{definition*} \end{flashcard} \begin{example*} We see $\Cl \P^1 = \ZZ$. \end{example*} \vspace{-1em} \textbf{Goal:} Given any non-\gls{sing} \gls{curve}, $f \in \K(X)$, want to define the order of $0$ or pole at $p \in X$. \begin{flashcard}[module-annihilation-lemma] \begin{lemma*} Let $A$ be a ring, $M$ a finitely generated $A$-module and $I \subsetneq A$ an ideal such that $I \cdot M = M$. Then there exists $x \in A$ such that $x \equiv 1 \pmod{I}$ and $x \cdot M = 0$. \end{lemma*} \begin{proof} \cloze{Recall if we have $\phi : M \to M$ an $A$-module homomorphism with $\phi(M) \subseteq IM$, then there exists $a_1, \ldots, a_n \in I$ such that \[ \phi^n + a_1 \phi^{n - 1} + \cdots + a_n = 0 .\] Take $\varphi$ to be the identity map. So this means multiplication by \[ 1 + a_1 + a_2 + \cdots + a_n \] is the zero homomorphism of $M$. Then taking this to be $x$, $x \equiv 1 \pmod{I}$ and $xM = 0$.} \end{proof} \end{flashcard} \begin{flashcard}[Nakayamas-lemma] \begin{theorem*}[Nakayama's lemma] \label{nakayama} \cloze{Let $A$ be a \gls{locring} with maximal ideal $m$. Let $I \subseteq m$ be an ideal. Let $M$ be a finitely generated $A$-module. Then $I \cdot M = M$ implies $M = 0$.} \end{theorem*} \begin{proof} \cloze{There exists $x \in A$ with $x \cdot M = 0$ and $x \equiv 1 \pmod{I}$, so $x \equiv 1 \pmod{m}$. So $x \notin m$. But this implies $x$ is invertible: otherwise, $\langle x \rangle \neq A$ and hence $\langle x \rangle \subseteq m$. Then $M = x^{-1} \cdot (xM) = 0$.} \end{proof} \end{flashcard} \begin{flashcard}[nakayama-lemma-coro] \begin{corollary*} Let $A$ be a \gls{locring} with maximal ideal $m$, $M$ a finitely-generated $A$-module, $I \subseteq m$ an ideal. Then if \cloze{$M = IM + N$ for a submodule $N \subseteq M$, we have $M = N$.} \end{corollary*} \begin{proof} \cloze{Note $M / N$ satisfies \[ I \left( \frac{M}{N} \right) = \frac{IM + N}{N} .\] If $M = IM + N$, we get $I \left( \frac{M}{N} \right) = \frac{M}{N}$, so $\frac{M}{N} = 0$.} \end{proof} \end{flashcard} \begin{flashcard}[nakayama-lemma-coro-2] \begin{corollary*} Let $A$ be a \gls{locring} with $m$ its maximal ideal. Let $x_1, \ldots, x_n \in M$ be a set of elements of a finitely generated module $M$ such that the images $\ol{x}_1, \ldots, \ol{x}_n \in M / mM$ form a basis for $M / mM$ as an $A / m$-vector space. Then $x_1, \ldots, x_n$ generate $M$ as an $A$-module. \end{corollary*} \fcscrap{ \begin{remark*} $A / m$ is a field since $m$ is maximal. Further, $M / mM$ is a vector space over $A / m$ via \[ (a + m) (\alpha + mM) = a \alpha + mM ,\] which is well-defined. \end{remark*} } \begin{proof} \cloze{Let $N \subseteq M$ be the submodule of $M$ generated by $x_1, \ldots, x_n$. Then the composition \[ N \hookrightarrow M \to M / mM \] is surjective. Thus $M = N + mM$. So by the previous Corollary, $M = N$.} \end{proof} \end{flashcard}