%! TEX root = AG.tex % vim: tw=50 % 21/02/2024 12PM \begin{flashcard}[Tp-mp-mp-mod-thm] \begin{theorem*} If $X \subseteq \AA^n$ is an \gls{affvty} then $\tspace_p X \cong (m_p / m_p^2)^*$ where $V^*$ is the dual of the $\KK$-vector space $V$. \end{theorem*} \begin{proof} \cloze{Note that there is an isomorphism \begin{align*} \OXp_{X, p} / m_p &\to \KK \\ f &\mapsto f(p) \end{align*} This map is surjective since constants are regular functions, and injective by definition of $m_p$. Thus we can define the $\KK$-vector space on $m_p / m_p^2$ by identifying $\KK$ with $\OXp_{X, p} / m_p$, and \[ (f + m_p) \cdot (g + m_p^2) = (f \cdot g + m_p^2) .\] We will show $\Der(\cring A(X), p) \cong (m_p / m_p^2)^*$. Given $D \in \Der(\cring A(X), p)$, we define \[ \varphi_D : m_p / m_p^2 \to \KK \] defined as follows: for $f, g \in \cring A(X)$, $g(p) \neq 0$, $f(p) = 0$, $(X \setminus \Z(g), \frac{f}{g}) \in m_p \OXp_{X, p}$. Set \begin{align*} \varphi_D \left( \frac{f}{g} \right) &= \text{``} D \left( \frac{f}{g} \right) \text{''} \\ &= \frac{g(p) D(f) - f(p) D(g)}{g(p)^2} \\ &= \frac{D(f)}{g(p)} \end{align*} since $f(p) = 0$. Note if $\frac{f_1}{g_1}, \frac{f_2}{g_2} \in m_p$, then \[ \varphi_D \left( \frac{f_1 f_2}{g_1 g_2} \right) = \frac{f_2(p)}{g_2(p)} \cdot \varphi_D \left( \frac{f_1}{g_1} \right) + \frac{f_1(p)}{g_1(p)} \varphi_D \left( \frac{f_2}{g_2} \right) = 0 .\] Thus $\varphi_D(m_p^2) = 0$, so we obtain a well-defined map $\varphi_D : m_p / m_p^2 \to \KK$. Conversely, if given $\varphi : m_p / m_p^2 \to \KK$, $p = (a_1, \ldots, a_n) \in X \subseteq \AA^n$. Note $x_i - a_i \in m_p$ for all $i$, and we define \[ D_\varphi(x_i - a_i) = \varphi(x_i - a_i) .\] This is sufficient to determine $D_\varphi$ as before.} \end{proof} \end{flashcard} \begin{example*} Suppose $X = \AA^n$, $p = 0$. Then \[ m_p / m_p^2 = \ub{(x_1, \ldots, x_n)}_{\subseteq \KK[x_1, \ldots, x_n]} / (x_1, \ldots, x_n)^2 \] (exercise). \end{example*} \begin{flashcard}[zariski-tangent-space] \begin{definition*}[Zariski tangent space] \glssymboldefn{zspace}{$T_p X$}{$T_p X$} \cloze{If $X$ is any \gls{vty}, and $p \in X$, then the \emph{Zariski tangent space} to $X$ at $p$ is \[ T_p X = (m_p / m_p^2)^* ,\] where $m_P \subseteq \OXp_{X, p}$ is the maximal ideal.} \end{definition*} \end{flashcard} \begin{flashcard}[open-cover-aff-vty-thm] \begin{theorem*} Any \gls{vty} has an open cover by \glspl{affvty} (i.e. open subsets isomorphic to \glspl{affvty}). \end{theorem*} \fcscrap{ \begin{note*} If $X \subseteq \P^n$ is projective, $\{U_i \cap X \st 0 \le i \le n\}$ ($U_i = \P^n \setminus \Z(x_i)$) is a cover of $X$ by affines. \end{note*} } \begin{proof} \cloze{Consider the most general case where $X$ is a \gls{qprojvty}, $X \subseteq \P^n$. Each $U_i \cap X$ is a \gls{qaffvty}. So enough to show each \gls{qprojvty} is covered by \glspl{affvty}. Let $p \in X \subseteq \AA^n$. Will find an affine neighbourhood of $p$ in $X$. Then $\ol{X} \subseteq \AA^n$, the closure, is an \gls{affvty}, and $Z = \ol{X} \setminus X$ is closed in $\ol{X}$. Choose $f \in \I(Z)$ with $f(p) \neq 0$. Then $\langle f \rangle \subseteq \I(X)$, so $\Z(f) \supseteq \Z(\I(Z)) = Z$, so $p \in \ol{X} \setminus \Z(f) \subseteq \ol{X} \setminus Z = X$. But $\ol{X} \setminus \Z(f)$ can be identified with the closed subset of $\AA^{n + 1}$ given by $\Z(\I(\ol{X}), yf - 1)$ as in \es{1}.} \end{proof} \end{flashcard} \begin{remark*} The definition of dimension of singular points goes through unchanged with the Zariski tangent space. \[ \dimX X = \inf \{\dim \zspace_p X \st p \in X\} .\] $p \in X$ is \gls{sing} if $\dimX X < \dim \zspace_p X$. By applying the above theorem, in fact the set of \gls{sing} points of an arbitrary \gls{vty} $X$ is closed in $X$. This also shows dimension and singularity are intrinsic to $X$. \end{remark*} \subsubsection*{Alternative definitions of dimension (we won't prove stuff here)} \begin{flashcard}[transcendence-deg-defn] \begin{definition*}[Transcendence degree] \cloze{If $F / \KK$ is a finitely generated field extension, then the \emph{transcendence degree} of $F / \KK$, written $\Trdeg_{\KK} F$ is the cardinality of any \gls{transc_basis}.} \end{definition*} \end{flashcard} \begin{flashcard}[krull-dimension-defn] \begin{definition*}[Krull dimension of a ring] \glsadjdefn{kdimr}{Krull dimension}{ring} \cloze{If $A$ is a ring, the \emph{Krull dimension} of $A$ is the largest $n$ such that there exists a chain of prime ideals \[ P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_n \subseteq A .\]} \end{definition*} \end{flashcard} \begin{flashcard}[krull-dimension-top-defn] \begin{definition*}[Krull dimension of a topological space] \glsadjdefn{kdimt}{Krull dimension}{topological space} \cloze{If $X$ is a topological space, the \emph{Krull dimension of $X$} is the largest $n$ such that there exists a chain of irreducible subsets \[ Z_0 \subsetneq Z_1 \subsetneq \cdots \subsetneq Z_n \subseteq X .\]} \end{definition*} \end{flashcard}