%! TEX root = AG.tex % vim: tw=50 % 19/02/2024 12PM \textbf{Recall:} $p \in X$ is \gls{sing} if $\dim_{\KK} \tspace_p X > \dimX X = \inf\{\dim \tspace_p X\}$. The above lemma tells us that the set of \gls{sing} points of $X$ is a \emph{proper} \gls{zzclosed} subset. \begin{example*} $y_2 - x^3 = 0$, $J = (2y, -3x^2)$ \begin{center} \includegraphics[width=0.3\linewidth]{images/b8e6e7f54efd461c.png} \end{center} vanishes when $x = y = 0$. \end{example*} \begin{example*} $x^2 + y^2 - z^2 = 0$, $J = (2x, 2y, -2z)$, vanishing at the origin. \begin{center} \includegraphics[width=0.3\linewidth]{images/bbcce1225e884745.png} \end{center} \end{example*} \subsubsection*{Intrinsic characterisation of the tangent space} \glssymboldefn{varphip}{$\varphi_p$}{$\varphi_p$} Let $X$ be an \gls{affvty}. For $p \in X$, define $\varphi_p : \cring A(X) \to \KK$ to be the \Kalgebra{\KK} homomorphism given by $\varphi_p(f) = f(p)$. \begin{flashcard}[derivation-centred-at-defn] \begin{definition*}[Derivation centred at $p$] \glsnoundefn{dcat}{derivation}{derivations} \glssymboldefn{Der}{Der$(A(x), p)$}{Der$(A(x), p)$} \glsnoundefn{Lrule}{Leibniz rule}{N/A} \cloze{A \emph{derivation centred at $p$} is a map $D : \cring A(X) \to \KK$ such that \begin{enumerate}[(1)] \item $D(f + g) = D(f) + D(g)$ \item $D(fg) = \varphip_p(f) D(g) + D(f) \varphip_p(g)$ (the $\RHS$ can also be written as $f(p)D(g) + g(p)D(f)$). (Leibniz rule). \item $D(a) = 0$ for $a \in \KK$. \end{enumerate} Denote $\Der(\cring A(X), p)$ to be the set of derivations centred at $p$.} \end{definition*} \end{flashcard} \begin{note*} $\Der(\cring A(X), p)$ is a $\KK$-vector space (check $D_1 + D_2$, $aD$ are derivations if $D_1, D_2, D$ are derivations). \end{note*} \begin{flashcard}[TpX-Der-iso-vspace-thm] \begin{theorem*} $\tspace_p X \cong \Der(\cring A(X), p)$ as $\KK$-vector spaces for $p \in X$. \end{theorem*} \begin{proof} \cloze{Given $(v_1, \ldots, v_n) \in \tspace_p X$, so if $\I(X) = \langle f_1, \ldots, f_r \rangle$, $\sum_i v_i \pfrac{f_j}{x_i} (p) = 0$ for all $j$. Define \begin{align*} \KK[x_1, \ldots, x_n] &\to \KK f &\mapsto \sum_i v_i \pfrac{f}{x_i}(p) \end{align*} This vanishes on elements of $\I(X)$, which are of the form $f = \sum_{j = 1}^r g_j f_j$ for $g_j \in \KK[x_1, \ldots, x_n]$. Then \begin{align*} f &\mapsto \sum_{i = 1}^n v_i \left( \sum_{j = 1}^r \left( \pfrac{f_j}{x_i} \cdot g_j + \pfrac{g_j}{x_i} f_j \right) (p) \right) &&\text{($f_j(p) = 0$ for all $j$, since $p \in X$)} \\ &= \sum_{i, j} \left( v_i \pfrac{f_j}{x_i} g_j(p) \right) \\ &= \sum_j g_j(p) \left( \sum_i v_i \pfrac{f_j}{x_i} (p) j\right) \\ &= 0 \end{align*} Thus we get a well-defined $\KK$-linear map \[ D_r : \frac{\KK[x_1, \ldots, x_n]}{\I(X)} = \cring A(X) \to \KK .\] Check easily that this is a \gls{dcat}. Given $D \in \Der(\cring A(X), p)$, define $v_i = D(x_i)$. By repeated use of the \gls{Lrule}, \[ D(f) = \sum_{i = 1}^n v_i \pfrac{f}{x_i} (p) .\] Example: \begin{align*} D(x_1 x_2) &= D(x_1) \cdot x_2(p) + x_1(p) D(x_2) \\ &= v_1 x_2(p) + v_2 x_1(p) \\ &= v_1 \pfrac{(x_1 x_2)}{x_1}(p) + v_2 \pfrac{(x_1 x_2)}{x_2} (p) \end{align*} Thus $D(f_j) = \sum_i v_i \pfrac{f_j}{x_i}(p)$, but $f_j \in \I(X)$, so $D(f_j) = 0$. Thus $\sum_i v_i \pfrac{f_f}{x_i}(p) = 0$ for all $j$, so $(v_1, \ldots, v_n) \in \tspace_p X$.} \end{proof} \end{flashcard} \begin{remark*} \glsref[sing]{Singular} points and \glspl{tspace} are intrinsic to \glspl{affvty}. \end{remark*} \begin{flashcard}[local-ring-defn] \begin{definition*}[Local ring] \glsnoundefn{locring}{local ring}{local rings} \glssymboldefn{OXp}{$O_{X, p}$}{$O_{X, p}$} \cloze{Let $X$ be a \gls{vty}, $p \in X$. We define the \emph{local ring} to $X$ at $p$ to be \[ \mathcal{O}_{X, p} = \{(U, f) \st \text{$U$ is an open neighbourhoof of $p$, $f : U \to \KK$ a \gls{gregf} function}\} / \sim \] where $(U, f) \sim (V, g)$ if $f|_{U \cap V} = g_{U \cap V}$. This is a subring of $\gK(X)$, the field of fractions.} \end{definition*} \end{flashcard} \begin{example*} \phantom{} \begin{enumerate}[(1)] \item $X \subseteq \AA^n$ is an \gls{affvty}, \[ \OXp_{X, p} = \left\{ \frac{f}{g} \in \gK(X) ~\Bigg|~ g(p) \neq 0, f, g \in \cring A(X) \right\} .\] \item $X \subseteq \P^n$ a \gls{projvty}. Then \[ \OXp_{X,p} = \left\{ \frac{f}{g} ~\Bigg|~ \substack{f, g \in \KK[x_1, \ldots, x_n] / \I(X), g(p) \neq 0, \\ f, g \text{ \gls{homog} of the same degree} }\right\} \] which is a subring of \[ \gK(X) = \left\{ \frac{f}{g} \st \substack{f, g \in \KK[x_0, \ldots, x_n] / \I(X), g \neq 0 \\ \text{$f, g$ \gls{homog} of the same degree} }\right\} \] \end{enumerate} \end{example*} \begin{remark*} The definition of $\OXp_{X, p}$ makes it intrinsic, i.e. not dependent on the embedding. \end{remark*} \begin{remark*} $\OXp_{X, p}$ is a ring ($(U, f) + (V, g) = (U \cap V, f|_{U \cap V} + g|_{U \cap V})$ etc). We define \[ m_p = \{(U, f) \in \OXp_{X, p} \st f(p) = 0\} .\] This is an ideal, and every element of $\OXp_{X, p} \setminus m_p$ is invertible. Thus $m_p$ is the \emph{unique} maximal ideal of $\OXp_{X, p}$. \end{remark*} \begin{flashcard}[local-ring-defn] \begin{definition*}[Local ring] \glsnoundefn{locring}{local ring}{local rings} \cloze{A ring $A$ with a unique maximal ideal is called a \emph{local ring}.} \end{definition*} \end{flashcard}